UG Welding Technology **SYLLABUS** 2016-Scheme

Scheme

Vision of the department

The department shall strive to act as a podium for the development and transfer of technical competence in academics, impart appropriate skills, entrepreneurship and research in the field of Mechanical Engineering to meet the changing need of society.

Mission of the department

- 1. To provide modular programmes from skill development to the research level.
- 2. To impart technical education and training in innovative state-of-the-art technology in the field of mechanical engineering.
- 3. To information disseminate of knowledge and by organizing seminars/ workshops/short term courses in a planned manner.
- 4. To provide extension services to rural society, industry professionals, institutions of research and higher learning in the field of mechanical engineering.
- 5. To interact with the industry, educational and research organizations, and alumni in the fields of curriculum development, training and research for sustainable social development and changing needs of society.

Programme Outcome (PO) s: UG

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and manufacturing/welding specialisation for the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, research literature, and analyse complex mechanical/welding engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions:** Design solutions for complex mechanical engineering problems or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
- 4. **Conduct investigations of complex problems:** Conduct investigations of complex manufacturing/welding problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** To apply appropriate techniques, resources and engineering and IT tools for modelling of different manufacturing/welding problems with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the manufacturing/welding engineering practice.
- 9. **Individual and teamwork:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex manufacturing/welding engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of manufacturing/welding engineering and management principles and apply these to

one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. Participate and succeed in competitive examination for higher studies.

Program specific outcomes (PSO)

1. Graduates having an ability to identify, analyze and solve engineering problems relating to mechanical systems together with allied engineering streams.

2. Graduates will be able to build the nation, by imparting technological inputs and managerial skills to become Technocrats and Entrepreneurs.

3. Graduates will be able to develop new concepts on various emerging fields and pursue advanced research.

Title of the course Subject Code

: Higher Engineering Mathematics

: AMT-511

L	Т	Р	Credits	Weekly Load
3	1	0	4	4

COURSE OUTCOMES:

After successful completion of course, the students should be able to

CO1: Learn about the basic concepts of Mathematics.

- **CO2:** Understand various rules of Mathematics and how it is applied on solve different equations.
- **CO3:** Understand the behavior of differential equations and integration.
- **CO4:** Learn about the mechanism different formulas derivations and theorem.

CO5: Get knowledge about complex matrix, transformations, theorem and their properties.

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
Cos	Prog	Programme Outcomes (POs) Progra										am Spe	cific		
		Outco											omes		
														(PSC))
	PO	РО	PO	РО	PO	PO	РО	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
CO1	3	1	3	2	2	2	2	3	2	2	2	2	-	-	-
CO2	3	1	3	1	1	3	3	3	3	2	3	3	1	-	1
CO3	3	3	3	3	1	2	1	1	3	2	3	2	-	-	-
CO4	3	1	3	1	3	2	2	2	2	2	2	2	1	2	1
CO5	3	3	3	3	1	3	1	1	3	2	2	3	-	1	1
Avera	3	1.8	3	2	1.6	2.4	1.8	2	2.6	2	2.4	2.4	1	1.5	1

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	1. Laplace transforms	Laplace transforms of elementary functions. Properties of Laplace transform. Transform of derivatives and integrals. Evaluation of integrals by Laplace transforms. Inverse Laplace transforms. Convolution theorem. Solution of ordinary differential equations. Unit step function and unit	7
	2. Fourier series	impulse function. Engineering applications. Fourier series. Change of interval. Even and odd functions. Half-range series.	5
	3. Partial derivatives and expansions	Functions of two or more variables. Partial derivatives. Homogenous functions. Euler's Theorem. Total derivative. Derivative of an implicit function. Tangent and normal to a	9

UG Syllabus for Welding Technology 20

2016	
Scheme	

		surface. Change of variables. Jacobians. Taylor's and Maclaurin's			
		series expansions for a function of two variables.			
Unit-2	4. Complex	Limit of a complex function. Differentiation. Analyticity. Cauchy-			
	functions	Riemann equations. Harmonic functions. Conformal mapping.	7		
		Some special transformations- translation, inversion and rotation.			
		Bilinear transformation.			
	5. Multiple	Double integral. Change of order of integration. Triple integral.			
	integral	Change of variables. Applications to area and volume. Beta and	8		
		Gamma functions.			
	6. Vector Calculus	Differentiation of a variable vector. Scalar and vector point			
		functions. Vector operator - Del. Gradient, curl and divergence -			
		their physical interpretation and applications. Directional	9		
		derivative. Line, surface and volume integrals. Theorems of Green			
		(in plane), Gauss and Stoke (without proof) - their verification and			
		applications.			

Total=45

Recommended Books:

1. R.K. Jain & S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publishers.

2. G.B. Thomas & R.L. Finney, Calculus: Analytical Geometry, Addison Wesley.

3. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley Eastern.

4. B.V. Ramana, Higher Engineering Mathematics, McGraw Hill.

Subject Code : **MET-511** Title of the course : **ENGINEERING MECHANICS**

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Understand the basic laws of Engineering Mechanics

CO2: Calculate and analyze the various forces acting on engineering component

CO3: Solve complex Engineering problems by applying mechanics laws

CO4: Analyze various forces acting on elements of truss

CO5: Understand and analyze the kinetics of particle

Pre-requisite knowledge:

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation): COs Programme Outcomes (POs) Specific Program Outcomes (PSO) PO PO PO PO PO PO PO PO PO PO1 PO1 PO1 PSO PSO PSO3 2 3 4 5 7 8 9 0 2 2 1 6 1 1 2 3 2 CO1 3 3 2 2 2 3 2 3 2 2 1 _ CO2 2 3 3 2 3 3 3 2 3 2 3 3 1 -1 CO3 2 2 3 3 2 2 2 3 2 3 2 2 1 2 2 CO4 2 3 3 3 3 3 2 3 2 2 3 3 2 1 _ 2 2 2 2 CO5 3 2 3 3 2 2 3 2 1 2 1 2.4 Avera 2.6 2.8 2.6 2.6 2.4 2.2 2.6 2.6 2.4 2.4 2.2 1.4 1.5 1.333 33 ge

Course Description	Lecture(s)
Unit-I	-
Fundamentals of Mechanics	
Fundamental concept of mechanics and applied mechanics, idealization of mechanics, Basic	04
dimensions and units of measurements, concept of rigid bodies, Laws of Mechanics	
Laws for Forces	
Control Scalars and Vectors, Vector operations, Vector addition of forces, Force and its effects,	04
characteristics of force vector, Bow's notation	
Force systems: Coplanar and space force systems. Coplanar concurrent and non-concurrent forces.	
Free body diagrams,	
Resultant and components of forces	
concept of equilibrium; parallelogram law of forces, equilibrium of two forces; super position and	04
transmissibility of forces, Newton's third law, triangle law of forces, different cases of concurrent,	
coplanar two forces systems, extension of parallelogram law and triangle law to many forces acting	

at one point	
Polygon law of forces	
Triangle law to many forces acting at one point - polygon law of forces, method of resolution into	04
orthogonal components for finding the resultant, graphical methods, special case of three concurrent,	
coplanar forces, Lami's theorem	
Moments & Couples	
Concept of moment, Varignon's theorem, Principle of moments, Moment of forces about a specified	03
axis, concept of couple - properties and effect, Moment of couple, Movement of force on rigid body,	
Resultant of force and couple system, Reduction of force and couple system, Parallel forces - like	
and unlike parallel forces, calculation of their resultant	
Trusses	
Simple trusses, analysis of simple truss, Method of Joints, Method of sections	05
UNIT II	
Friction	
Concept of friction, Characteristics of Dry friction, Laws of Coulomb friction, limiting friction,	05
coefficient of friction; sliding friction and rolling friction, Belt friction, Ladder friction.	
Centre of Gravity	
Concept of gravity, gravitational force, centroid and centre of gravity, centroid for regular lamina	06
and centre of gravity for regular solids. Position of centre of gravity of compound bodies and	
centroid of composite area. CG of bodies with portions removed.	
Simple Lifting Machines	
Concept of machine, mechanical advantage, velocity ratio and efficiency of a machine, their	06
relationship, law of machine, Simple machines : lever, wheel and axle, differential wheel & axle,	
pulley systems, simple screw jacks, winch crab (single & double	
Kinetics of particle	
Types of motion, linear motion with uniform velocity, uniform & varying acceleration, motion	07
under gravity, motion of projectiles, relative motion of a particle. Newton's laws of motion, equation	
of motion, equation of motion for system of particles, D' Alembet's Principle, Motion of connecting	
bodies. Concept of momentum, Impulse momentum principle, Conservation of momentum,	
Principle of work and energy.	
Total=48	

Recommended Books:

- 1. J. L. Mariam & L. G. Kraige, Engineering Mechanics. John Wiley & Sons
- 2. R. C. Hibbeler, Engineering Mechanics (Static & Dynamics), Prentice Hall
- 3. Beer & Johnston, Engineering Mechanics (Static & Dynamics), McGraw Hill
- 4. Boresi&Schimidt, Engineering Mechanics (Static & Dynamics), Cengage Learning
- 5. R. K. Rajput, Engineering Mechanics, Dhanpat Rai Publication, New Delhi
- 6. S. Rajshekharan, Engineering Mechanics, VIkas Publishing House , New Delhi

Subject Code MEP-511 : Title of the course **ENGINEERING MECHANICS** :

L	Т	Р	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to

- **CO1:** Understand the basic laws of Engineering Mechanics
- **CO2:** Calculate and analyze the various forces acting on engineering component
- **CO3**: Solve complex Engineering problems by applying mechanics laws
- CO4: Analyze various forces acting on elements of truss
- CO5: Understand and analyze the kinetics of particle

Pre-requisite knowledge:

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation): Programme Outcomes (POs) COs Program Specific Outcomes (PSO) PO PO PO PO PO PO PO PO PO PO1 PO1 PO1 PSO PSO PSO3 3 9 1 2 4 5 6 7 8 0 1 2 1 2 CO1 3 3 2 3 2 2 2 3 2 3 2 2 2 1 _ CO₂ 2 3 3 2 3 3 3 2 3 2 3 3 1 1 -CO3 2 2 3 3 2 2 2 3 2 3 2 2 1 2 2 CO4 2 3 2 2 3 3 3 3 3 2 3 3 2 1 _ CO5 3 2 3 2 3 2 2 2 3 2 2 2 1 2 1 2.4 2.6 2.8 2.6 2.6 2.4 2.2 2.6 2.6 2.4 2.4 2.2 1.4 1.5 1.333 Avera 33 ge

List of experiments ENGINEERING MECHANICS LAB (MEP-511)

L	Т	Р	Credits	Weekly Load
0	0	2	1	2

- 1. To verify parallelogram law of forces addition.
- 2. To verify triangular law of forces addition.
- 3. To verify Lamis theorem.
- 4. To determine efficiency of screw jack.
- 5. To determine coefficient of friction on horizontal surface.
- 6. To determine coefficient of friction on inclined plane.
- 7. To calculate moment of inertia of a body.
- 8. To determine center of gravity of a 3 dimensional body.
- 9. To determine efficiency of wheel and Axle.

Subject Code	:	MET-512
Title of the course	:	BASIC ENGINEERING THERMODYNAMICS

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

After successful completion of course, the students should be able to

CO1: Able to identify the various types of engines along with their working.

CO2: Able to conduct experiments on performance analysis of engines.

CO3: Develop the basic knowledge the steam engines/ steam nozzle/ steam turbine.

CO4: Able to conduct experimentation on performance analysis of jet propulsion/ compressors.

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Prog	Programme Outcomes (POs) Program Specific													
		Outcomes (PSO)													
	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	2	1	3	2	3	2	3	2	2	2	2	1	1
CO2	3	3	3	3	1	3	2	3	2	3	2	3	1	2	1
CO3	3	3	3	2	2	3	2	2	2	2	3	2	1	2	2
CO4	3 3 3 2 2 3 2 3 3 3 2 2									2	2	1	2		
Avera	3	3	2.7	2	2	2.7	2.2	2.5	2.5	2.5	2.25	2.25	1.5	1.5	1.5
ge			5			5	5								

Course Description	Lectures
Unit-I	
Internal Combustion Engines	
Introduction to I.C. Engines and their classification, Engine components,	7
Nomenclature, Comparison of S.I. & C.I. engine, Working principles of 2-stroke	
and 4-stroke engine, Comparison of 2-stroke and 4-stroke engine, Gas power cycle,	
Introduction of different cycles, Carnot cycle, Otto, Diesel cycle, Dual cycle.	
Analysis of Otto cycle, Diesel cycle & Dual cycles.	
Combustion in S.I. Engine	
Introduction, Combustion in S.I. engine, Flame front propagation, Factor	7
influencing flame speed, pre-ignition, abnormal combustion, Phenomena of knock	
in S.I. engine, Effect of engine variables on knocking.	
Combustion in C.I. Engine	

2016	
Scheme	

Total-48

Recommended BooksTitleAuthor(s)PublisherI.C. EngineMathur& SharmaDhanpat Rai & SonsThermodynamicsP.K.NagTMHThermodynamics (Vol. I-R.YadavCPH

III) Heat Engineering Thermal Engineering Engineering Thermodynamics

V.P.Vasandhani P.L.Ballaney O.P.Single Khanna Pubilsher Khanna Pubilsher TMH

L	Т	Р	Credits	Weekly Load
0	0	2	1	2

After successful completion of course, the students should be able to

- **CO1:** Able to identify the various types of engines along with their working.
- CO2: Able to conduct experiments on performance analysis of engines.
- **CO3:** Develop the basic knowledge the steam engines/ steam nozzle/ steam turbine.
- **CO4:** Able to conduct experimentation on performance analysis of jet propulsion/ compressors.

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Prog	Programme Outcomes (POs) Program Specific													
		Outcomes (PSO)													
	РО	РО	РО	РО	РО	РО	РО	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	2	1	3	2	3	2	3	2	2	2	2	1	1
CO2	3	3	3	3	1	3	2	3	2	3	2	3	1	2	1
CO3	3	3	3	2	2	3	2	2	2	2	3	2	1	2	2
CO4	3 3 3 2 2 3 2 3 3 3 2 2									2	2	1	2		
Avera	3	3	2.7	2	2	2.7	2.2	2.5	2.5	2.5	2.25	2.25	1.5	1.5	1.5
ge			5			5	5								

List of Experiments APPLIED THERMODYNAMICS LAB

- 1. Constructional details and working of 2-stroke petrol engine.
- 2 Constructional details and working of 4-stroke petrol engine.
- 3. Constructional details and working of 4-sytokr diesel engine.
- 4. To find the performance of a diesel engine (B.H.P, thermal efficiency, fuel consumption, air consumption.)
- 5. Make a heat balance sheet of 4-stroke single cylinder diesel engine.
- 6. Morse test on 4-stroke 4 cylinder petrol engine.
- 7. To Analyses the exhaust gases of a vehicle with the help of a exhaust gas analyses.
- 8. To find out the flash point and fire point of kerosene.
- 9. Constructional details and working of steam engine.
- 10. Constructional details and working of turbojet engine.

Subject Code:MET-513Title of the course:MANUFACTURING PROCESS I

PROCESSES

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

- CO1: select and use different cutting tools for various operations such as turning drilling etc
- CO2: identify and use of various presses and related operations
- CO3: understand metal finishing operations such as metal spraying & coating etc.
- CO4: know basics of various powder metallurgy aspects
- CO5: understand various gear manufacturing methods

Pre-requisite knowledge:

CO/PO	O/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Prog	Programme Outcomes (POs) Program Specific													
		Outc												mes (P	SO)
	РО	РО	PO	РО	РО	РО	РО	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	2	3	2	2	2	3	2	3	2	2	1	1	1
CO2	2	3	3	2	3	3	3	2	3	2	3	3	2	2	1
CO3	2	2	3	3	2	2	2	3	2	3	2	2	1	2	3
CO4	2	3	3	3	3	3	2	3	3	2	3	2	2	1	2
CO5	3	2	3	2	3	2	2	2	3	2	2	2	2	1	3
Avera	2.4	2.6	2.8	2.6	2.6	2.4	2.2	2.6	2.6	2.4	2.4	2.2	1.6	1.4	2
ge															

Course Description	Lecture(s)
Unit-I	·
Cutting Tools	08
Types of cutting tools, cutting tool materials and their properties, illustration of different cutting	
tools, design and manufacturing of a single point cutting tool, a twist drill and milling cutters.	
Press Working	08
Types of presses, press working operations; shearing, blanking, piercing, coining, swaging,	
embossing and upsetting. Types of dies, punches. punch holders & strip Layout	
Metal Finishing and Coating	08

Purpose of grinding, surface grinding, cylindrical grinding, centre-less grinding, specifications of	
grinding wheel, super finishing, introduction to Honing, Lapping Polishing, Buffing and super-	
finishing. Metal Spraying. Metal Coating; galvanizing, electro-plating and anodizing.	
Unit-II	
Powder Metallurgy	06
Principle. Methods of making powder from metal. Processes involved; Compacting, Sintering	
and finishing operations. Advantages and Disadvantages of powder metallurgy	
Thread Manufacturing	08
Introduction, types of threads, threads making techniques, thread cutting on a lathe, threads	
finishing.	
Gears and Gear Manufacturing	10
Gear nomenclature, types of gears and their applications, gear manufacturing methods, gear	
cutting on a milling machine, gear hobbing, gear shaping and gear finishing	
Totol – 49	•

<u>Total = 48</u>

Recommended Books

Title Author(s) Publisher Manufacturing Science Malik & Ghosh EWP Production Engineering Science Pandey & Singh Standard Publishers Metal cutting Theory A.Bhattacharya Central Book publishers

Subject Code	:	MET 516
Title of the course	:	Fluid Mechanics and Machinery

L	Т	Р	Credits	Weekly Load
3	1	0	4	4

After successful completion of course, the students should be able to

- To learn fluid properties, types of fluid and to apply this knowledge for understand of static fluid CO1: behaviour.
- CO2: Understand the principles of submerged surface and floating surfaces
- CO3: Understand the kinematics and dynamics of fluid flow
- CO4: Differentiate between various turbines and its principle.
- CO5: Understand mechanics of various pumps and its characteristics

Pre-requisite knowledge: \

CO/PO	Mappi	ng: (S	trong(3) / M	edium	(2) / V	Veak(1) indi	cates s	trength	of corr	elation):		
COs	Programme Outcomes (POs)										Program Specific				
													Outcomes (PSO)		
	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	3	2	2	2	3	2	3	2	1	3	1	2	2
CO2	3	2	3	3	3	2	3	3	2	3	2	3	2	3	1
CO3	2	3	3	2	2	1	2	2	2	3	2	3	3	1	2
CO4	3	3	3	3	3	3	2	3	2	2	1	2	1	2	3
CO5	2	1	2	3	3	3	2	2	2	2	2	3	1	2	2
Avera	2.6	2.4	2.8	2.6	2.6	2.2	2.4	2.4	2.2	2.4	1.6	2.8	1.6	2	2
ge															

Course Description	Lectures
Unit-I	
Fundamental concepts	
Definition of fluid, distinction between solid and fluid, fluid properties: viscosity, surface tension, capillarity, vapour pressure; types of fluid	03

Fluid statics	
Control volume, forces on fluid element, fundamental equation of fluid statics, pressure and devices for its measurement, centre of pressure, buoyancy, centre of buoyancy, metacentre, metacentric height, hydrostatic thrust on submerged bodies	06
Kinematics of fluid	
Scalar and vector fields, flow field and methods of describing fluid motion, classification of fluid flow, motion of fluid particle along a curved path, velocity and acceleration of fluid particle, rate of discharge, continuity equation in differential form in different co- ordinate systems, velocity potential, rotation, circulation, vorticity, stream lines, path lines, streak lines, stream function, flow net, conservation of momentum- equation of motion and momentum theorem	06
Dynamics of fluid flow	
Fluid dynamics, control volume and control surface, energy and its different form used in fluid mechanics, Euler's equation of motion, Bernoulli's theorem, application of Bernoulli's theorem, Euler's equation along a streamline, Application of Bernoulli's theorem.	06
UNIT II	
Impact of jet	
Dynamic force exerted by fluid jet on stationary/ moving, vertical, inclined, flat and curved plates.	03
Pelton Wheel and impulse turbine	
Element of hydroelectric power plant, efficiencies of hydraulic turbines; Classification of turbines. Pelton wheel turbine, main component and their function, turbine power, nozzle and jet diameter, No. of jets, mean diameter of a Pelton runner, selection of a speed, jet ratio, minimum no. of buckets and other impulse turbine. Design of Pelton turbine runner. Force, power and efficiency. Unit and specific quantities, Specific speed.	06
Reaction turbine,	
Francis turbine, work done and efficiency of Francis turbine, Design of Francis turbine runner. Kaplan turbine, work done & efficiency of Kaplan turbine, Cavitation's and its effect. Draft tube theory and it's type, efficiency of draft theory.	05
Reciprocating pumps	
classifications, main parts of a reciprocating pumps, working principle. Discharge, work done and power requirement in a reciprocating pump. slip of a reciprocating pump.	04

Effect of accelerating of piston on velocity and acceleration in the suction and delivery pipe. Indicator diagram. Air vessel.	
Centrifugal pumps	
working principle and operation, classification, Main components, discharge, Head of a pump , power , determination loss of head in pipe line and pipe fitting. Efficiencies of Centrifugal pump. Priming of pump. Cavitation in pumps. Net positive section head. Selection of a centrifugal pump.	05
Total=44	•

Recommended Books:

- 1. White, Fluid Mechanics, ,McGraw Hill
- 2. Munson, Fundamentals of Fluid Mechanics, John Wiley & Sons
- 3. Cenegal, Fluid Mechanics, McGraw Hill
- 4. Modi & Seth, Fluid Mechanics & Fluid Machines, Standard Publishers
- 5. D. S. Kumar, Fluid Mechanics & Fluid Machinery, Kataria& Sons
- 6. A.K Jain, Fluid Mechanics, Khanna Publishers
- 7. Om & Biswas, Fluid Mechanics & Fluid Machines, Tata McGraw-Hill.
- 8. J. Lal, Fluid Mechanics, Metropolitan.

Subject Code	:	MEP- 516
Title of the course	:	Fluid Mechanics and Machinery Lab

L	Τ	Р	Credits	Weekly Load
0	0	2	1	2

After successful completion of course, the students should be able to

- CO1: To learn fluid properties, types of fluid and to apply this knowledge for understand of static fluid behaviour.
- CO2: Understand the principles of submerged surface and floating surfaces
- CO3: Understand the kinematics and dynamics of fluid flow
- CO4: Differentiate between various turbines and its principle.
- CO5: Understand mechanics of various pumps and its characteristics

CO/PO	Mappi	ng: (S	trong(3) / M	edium	(2) / V	Veak(1) indi	cates s	trength	of corr	elation):		
COs	Programme Outcomes (POs)											Program Specific			
													Outco	mes (P	SO)
	РО	PO	PO	РО	PO	РО	РО	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	3	2	2	2	3	2	3	2	1	3	1	2	2
CO2	3	2	3	3	3	2	3	3	2	3	2	3	2	3	1
CO3	2	3	3	2	2	1	2	2	2	3	2	3	3	1	2
CO4	3	3	3	3	3	3	2	3	2	2	1	2	1	2	3
CO5	2	1	2	3	3	3	2	2	2	2	2	3	1	2	2
Avera	2.6	2.4	2.8	2.6	2.6	2.2	2.4	2.4	2.2	2.4	1.6	2.8	1.6	2	2
ge															

Pre-requisite knowledge: \

List of Experiments

- 1. Determination of Viscosity of a Liquid by Redwood viscometer.
- 2. Verification of Bernoulli's Theorem.
- 3. To determine Coefficient of Discharge of Venturimeter.
- 4. To determine Coefficient of Discharge of orifice meter.
- 5. To determine Coefficient of Discharge of Weir.
- 6. To study the constructional details of a Pelton turbine and measure its efficiency.
- 7. To study the constructional details of a Francis turbine, Kaplan turbine
- 8. To study the constructional details of a Centrifugal Pump and measure its efficiency
- 9. To study characteristics curves of Reciprocating Pump.

Subject Code : **MEP-515**

Title of the course **MACHINE DRAWING** :

L	Т	Р	Credits	Weekly Load
0	0	4	2	4

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Recall the concept of basicengineering drawing

CO2:Understand and represent a machine component or machine by lines according to certain set rules

CO3: Understand and apply the knowledge of machine drawing as a system of Communication in which ideas are expressed clearly and all information fully conveyed.

CO4:Use the techniques, skills and modern engineering tools necessary for creating and assembling with the concept of virtual work.

CO5: Design a system, component or process to meet desired needs within, realistic constraints such as manufacturability ,economic ,environmental, safety & sustainability etc.., to represent a part drawing and assembly drawings.

Pre-requisite knowledge:

CO/PO	Mappi	ng: (S	trong(3) / M	edium	(2) / V	Veak(1) indi	cates s	trength	of corr	elation):			
COs	Programme Outcomes (POs)										Progra	Program Specific				
													Outco	Outcomes (PSO)		
	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	
CO1	3	2	2	2	1	1	1	1	2	1	1	3	2	1	1	
CO2	3	3	2	2	3	1	1	1	2	3	1	3	2	3	1	
CO3	3	2	2	1	3	1	1	1	1	3	2	2	1	3	2	
CO4	2	2	3	2	1	1	1	1	2	1	2	2	2	1	2	
CO5	2	2	2	1	1	1	1	1	1	1	1	2	1	1	1	
Avera	2.6	2.2	2.2	1.6	1.8	1	1	1	1.6	1.8	1.4	2.4	1.6	1.8	1.4	
ge																

(**a**) (**X**) (**b**) 11

Course Description	Lecture(s)
Unit-I	
Basics of Machine Drawing	04
Machining symbols, surface finish characteristics, surface roughness symbols, limits, fits and	
tolerances.	

UG Syllabus for Welding Technology	20
	Sch

Screw Threads	06
Screw thread nomenclature, thread designation, conventional representation of screw threads,	
different types of threads and their representation.	
Fastenings	08
Nut, bolt and washer; types of nuts, types of bolts, Welding; types of welded joints,	
representation of a weld, welding symbols according to B.I.S.	
Unit-II	
Keys, Cotters and Joints	08
Introduction, proportions of a key, types of keys and their applications. A Cotter and a Gib with	
their uses. Types of joints used for connecting rods.	
Rivets and Riveted Joints	08
Types of rivets, types of riveted joints, general terms/rules used for riveted joints.	
Assembly and detail drawings	14
One assembly drawings of a Tail stock, details (drawings of different elements) of a screw jack	
assembly.	
Total – 48	

<u>Total = 48</u>

Recommended Books

Title	Author(s)	Publisher
Machine Drawing	N D Bhatt	Khanna
Machine Drawing	P S Gill	Standard
Machine Drawing	R.K. Dhawan	S. Chand
Machine Drawing	GoutamPohit& Pea	arson Education
	Goutam Ghosh	

Subject Code	:	MET-521
Title of the course	:	Physical Metallurgy and Heat Treatment

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

After successful completion of course, the students should be able to

- **CO1:** Understanding crystal structure, solid solutions and its types, component, solubility limit, diffusion in solids.
- **CO2:** Learning about the Crystal defects and their classifications, edge and screw dislocations, stress strain relationship, plastic deformation by slip & twinning, review of strengthening mechanisms.
- **CO3:** Need and importance of phase diagram, unary & binary phase diagrams, Allotropic transformation of iron and steel, analysis of phase diagrams, Iron carbon equilibrium diagram.
- **CO4:** Select a suitable heat treatment process for a given application.
- **CO5:** Understand various hardening process.

Pre-requisite knowledge:

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation): COs Programme Outcomes (POs) Program Specific Outcomes (PSO) PO PO PO PO PO PO PO PO PO PO1 PO1 PO1 PSO PSO PSO CO1 CO2 CO3 CO4 CO5 2.4 2.2 2.2 2.2 2.4 1.4 2.2 2.2 Avera 2.4 2.6 1.8 1.4 ge

Course Description	Lecture(s)
Unit-I	
Structure of solids	06
Introduction to metals, non metals and alloys, crystal structure, solid solutions and its types,	
component, solubility limit, diffusion in solids.	
Plastic deformation and work hardening	08
Crystal defects and their classifications, edge and screw dislocations, stress strain relationship, plastic	;
deformation by slip & twinning, review of strengthening mechanisms.	
Phase Transformation I	10
Phase diagram: Introduction, importance and objectives of phase diagram, unary & binary phase	

UG Syllabus for Welding Technology

diagrams, Allotropic transformation of iron and steel, cooling curves, Gibbs's phase rule, Lever rule,	
common types of phase diagram: eutectic and eutectoid systems, peritectic and peritectoid systems,	
Properties of austenite, ferrite, pearlite, martensite.	
Unit-II	
Phase Transformation II	10
Introduction, Nucleation and Growth, Ingot structure, solidification and crystallization, recovery, re-	
crystallization and grain growth, Iron carbon equilibrium diagram, Transformation of austenite to	
pearlite, Transformation of austenite at constant temperature: time temperature transformation	
(TTT), continuous cooling transformation (CCT).	
Heat Treatment:	08
Heat Treatment: Principles, purpose, classification of heat treatment processes, annealing,	
normalizing, stress relieving, hardening, tempering. harden ability.	
Surface Hardening	06
Carburizing: Gas, Pack, Liquid, Nitriding, cyaniding, flame and induction hardening. Surface	
hardening applications	

Recommended Books:

Title

1.	Engg.	Phy.	Metallurgy	&Heat	Treatment
----	-------	------	------------	-------	-----------

- **2.** Physical Metallurgy
- **3.** Material Science and Engineering
- 4. Heat treatment principles and applications
- 5. Physical metallurgy handbook

Total=48

Author(s) Yuri Lakhtin Donalk S Clark Raghvan Rajan and Sharma **Publisher** Mir Publishers East West Press PHI PHI

McGRAW Hill

Anil Kumar Sinha

Subject Code:MEP-521Title of the course:Physical Metallurgy and Heat Treatment Lab

ĺ	L	Т	Р	Credits	Weekly Load
	0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to

- CO1: Understanding crystal structure, solid solutions and its types, component, solubility limit, diffusion in solids.
- **CO2:** Learning about the Crystal defects and their classifications, edge and screw dislocations, stress strain relationship, plastic deformation by slip & twinning, review of strengthening mechanisms.
- **CO3:** Need and importance of phase diagram, unary & binary phase diagrams, Allotropic transformation of iron and steel, analysis of phase diagrams, Iron carbon equilibrium diagram.
- **CO4:** Select a suitable heat treatment process for a given application.
- **CO5:** Understand various hardening process.

Pre-requisite knowledge:

CO/PO N	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
Cos	Programme Outcomes (POs)											ProgramSpecificOutcomes (PSO)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	2	3	3	2	2	1	2	2	1	2
CO2	3	2	3	2	2	2	2	2	3	2	2	2	2	2	1
CO3	3	3	3	3	2	2	3	2	2	3	2	2	1	2	3
CO4	3	2	3	2	3	2	2	3	2	3	1	2	2	1	2
CO5	3	3	3	3	2	2	1	3	2	2	1	3	2	1	3
Average	3	2.4	3	2.4	2.2	2	2.2	2.6	2.2	2.4	1.4	2.2	1.8	1.4	2.2

List of Experiments

- 1. Introduction to the crystal lattice of solids.
- 2. Familiarization and specimen preparation with the following examinations
- i. Macro examination of specimens of ferrous materials.
- ii. Micro examination of specimens of ferrous materials
- iii. Macro examination of specimen of non-ferrous material.
- iv. Micro examination of specimen of non-ferrous material.
- 3. To carry out microstructural studies on different steel specimens e.g. cast specimens, welded specimens etc.
- 4. Study the effect of varying cooling rate on the microstructure of steel and comparing in terms of grain size and mechanical properties.
- 5. To carry out following heat treatments of the given steel specimen
 - i. Annealing.,
 - ii. Normalizing

iii. Hardening

- 6. To conduct following case hardening treatment of the given specimen.
 - i. Carburizing.
- ii. Flame hardening.
- 7. Analysis of the microstructural changes in the specimens after giving different heat treatments as above.
- 8. Familiarization with the codification of steels and other alloys.

Title of the course : Conventional Welding Processes

Subject Code : MET-526

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

- CO1: Apply the knowledge of welding fundamentals to solve welding problems.
- Should be able to select a suitable welding process for a particular application. CO2:
- CO3: Understand the impact of welding operations on environment
- CO4: Apply the ethical principles regarding health, safety and legal issues during operations of welding machines

Pre-requisite knowledge: Nil

C	CO/PO Mapping : (Strong(S) / Medium(M) / Weak(W) indicates strength of correlation):											
	Programme Outcomes (POs)											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	2	1	1	2	2	3	1	2
CO2	2	2	2	1	1	1	2	3	2	3	1	1
CO3	3	3	2	1	1	1	1	3	3	3	2	2
CO4	2	2	2	1	1	1	2	2	2	3	2	1
Average	2.25	2.25	2	1	1.25	1	1.5	2.5	2.25	3	1.5	1.5

Course Description	Lecture(s)
Unit-I	

2016 Scheme

Introduction to Welding Processes	
Definition, Terms used in welding, Advantages, Classification of welding processes and their principles in brief with applications.	04
Gas Welding	
Introduction & principle of gas welding, Different gases used & their properties, Types of flames, Welding technique and safety Applications of the process.	04
Brazing and Soldering	
Difference between brazing and soldering, braze welding, Wetting and spreading characteristics, surface tension and contact angle concept, introduction to different brazing and soldering methods (torch, furnace, brazing and soldering consumables, application of brazing and soldering.	06
Shielded metal arc Welding	
Electric arc, arc starting methods, Arc stability, arc efficiency, arc blow, power sources, VI characteristics of power source, electrode polarity, duty cycle, classification and coding of SMAW electrodes.	10
Unit-II	I
Gas tungsten arc welding	
Gas tungsten arc welding- Principle, Equipments used and welding parameters, Shielding gases and their effect, Advantages, Disadvantages and Applications of the process.	06
Gas metal arc welding	
Gas metal arc welding- Principle, Equipments used and variables, Shielding gases and their effect on bead geometry, Mode of metal transfer and pulse MIG, Flux core arc welding and CO_2 Welding, Applications of the process.	06
Submerged Arc Welding	
Submerged arc welding- Principle, equipments used, welding parameters, SAW fluxes, classification, flux- wire combination, Multi wire, strip cladding and narrow gap welding Applications of the process.	06
Resistance Welding	
Basic principle, brief introduction to spot, seam, projection and flash butt welding, welding variables, resistance welding equipments, heat balance, applications.	06

Total=48

Recommended Books:

- 1. Welding Processes and Technology by R.S Parmar (Publisher: Khanna Publishers)
- Modern Arc Welding Technology by S.V. Nadkarni (Publisher: Oxford & IBH) 2.
- 3. Modern Arc Welding Technology by Hobart B. Cary (Publisher; Prentice Hall Cambridge Univ. Press)

Title of the course

: Conventional Welding Processes

Subject Code : MEP-526

L	Т	Р	Credits	Weekly Load
0	0	6	1	3

Course Outcomes:

After successful completion of course, the students should be able to

- CO1: Apply the knowledge of welding fundamentals to solve welding problems.
- Should be able to select a suitable welding process for a particular application. CO2:
- CO3: Understand the impact of welding operations on environment
- Apply the ethical principles regarding health, safety and legal issues during operations of welding machines CO4:

Pre-requisite knowledge: Nil

C	CO/PO Mapping : (Strong(S) / Medium(M) / Weak(W) indicates strength of correlation):													
	Programme Outcomes (POs)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	2	1	2	1	1	2	2	3	1	2		
CO2	2	2	2	1	1	1	2	3	2	3	1	1		
CO3	3	3	2	1	1	1	1	3	3	3	2	2		
CO4	2	2	2	1	1	1	2	2	2	3	2	1		
Average	2.25	2.25	2	1	1.25	1	1.5	2.5	2.25	3	1.5	1.5		

List of experiments

(8-10 experiments from the following list)

- 1. Introduction to lab and safety aspects regarding arc and gas welding.
- 2. To study the equipment for gas welding.
- 3. Identification of various flames in gas welding.

- 4. To practice with gas welding equipment.
- 5. To practice soldering and brazing.
- 6. To study the power sources for arc welding processes.
- 7. To practice bead on plate experiment using SMAW process.
- 8. To study the effect of electrode polarity on bead characteristics.
- 9. To practice bead on plate experiment using GMAW process.
- 10. To practice bead on plate experiment using GTAW process.
- 11. To practice bead on plate experiment using SAW process.
- 12. To study the equipment for resistance welding. (spot/projection/flash butt etc.)
- 13. To perform nugget test for spot welding.
- 14. To perform flash butt welding.

Subject Code	:	MET-523
Title of the course	:	Strength of Materials

L	Т	Р	Credits	Weekly Load
3	1	0	4	4

After successful completion of course, the students should be able to

CO1: Apply the basic concepts and principles of strength of materials.

CO2: Calculate stresses and deformations of objects under external loadings.

CO3: Analyze and design structural members subjected to tension, compression, torsion, bending and combined stresses using the fundamental concepts of stress, strain and elastic behavior of materials.

CO4: Utilize appropriate materials in design considering engineering properties, sustainability, cost and weight.

CO5: Perform engineering work in accordance with ethical and economic constraints related to the design of structures and machine parts.

Pre-requisite knowledge:

CO/PO N	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Programme Outcomes (POs)										Program Specific				
													Outcomes (PSO)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	3	2	2	2	3	2	2	2	1	2	1
CO2	2	3	2	2	2	3	3	2	2	3	2	3	2	2	1
CO3	2	2	2	3	3	2	3	3	3	2	3	2	1	2	2
CO4	2	2	2	2	3	3	3	2	2	2	2	2	2	1	2
CO5	3	3	2	2	2	2	2	2	2	2	2	3	2	1	1
Average	2.4	2.4	2.2	2.2	2.6	2.4	2.6	2.2	2.4	2.2	2.2	2.4	1.6	1.6	1.4

Course Description	Lecture(s)
Unit-I	

2016 Scheme

PROPERTIES OF MATERIAL:	03
Introduction, uni-axial tension test, idealized stress-strain diagrams, isotropic linear elastic,	05
visco-elastic and plastic materials, compression test, impact test, fatigue test, torsion and	
bending test	
SIMPLE STRESS & Strain	05
Concept of stresses and strains, relationship between elastic constants, Modulus of	05
elasticity stresses and strains in bars subjected to axial loading, , stress produced in	
compound bars subjected to axial loading. Temperature stress and strain calculations due to	
applications of axial loads and variation of temperature in single and compound walls.	
Extension of uniform bar & tapered bar under its own weight and due to load applied,	
Extension of uniform bar & tapered bar under its own weight and due to load applied,	
COMPOUND STRESSES AND STRAIN	04
Two dimensional system, stress at a point on a plane, principal stresses and principal	
planes, Mohr's circle of stress, ellipse of stress and their applications. Two dimensional	
stress-strain system, principal strains and principal axis of strain, circle of strain and ellipse	
of strain. Relationship between elastic constants. principal stresses determined from	
principal strain	
SHEAR FORCE AND BENDING MOMENT IN BEAMS	08
Relation between unit load, Force and Moment. Shear Force and Bending Moment	
diagram of beams under various types of loading for cantilevers, simply supported and	
fixed beams with or without overhangs. Calculation of maximum BM and SF and the point	
of contra flexure under concentrated loads, uniformly distributed loads over the whole span	
or part of span, combination of concentrated loads (two or three) and uniformly distributed	
loads, uniformly varying loads, application of moments.	
Theory of bending stresses	06
simple bending theory, derivation of bending formula: its application to beams of various	
sections (rectangular, circular and channel, etc.) Shear Stresses- Derivation of formula	
,Shear stress distribution across various beams sections like rectangular, circular,	
triangular, I, T angle sections, Composite beams, bending and shear stresses in composite	
beams	
Unit-II	
Slope & DEFLECTION OF Beams	06
Relationship between moment, slope and deflection Deflection by calculus, Macaulay's	
methods, Moment area method, method of deflection coefficient, deflection due to shear of	
various beams under the action of various loading conditions; built in and propped beam.	
Torsion	04
Derivation of torsion equation and its assumptions. Applications of the	
equation of the hollow and solid circular shafts, Torsional rigidity., Combined torsion and	
bending of circular shafts, principal stress and maximum shear stresses under combined	
loading of bending and torsion. Analysis of close-coiled-helical springs.	
Thin Cylinders and Spheres	04
Derivation of formulae and calculations of hoop stress, longitudinal stress in a cylinder,	
and sphere subjected to internal pressures.	

Columns and Struts	08
Definitions and examples of instability; criteria for stability of equilibrium, Euler's theory	
of columns, Slenderness ratio. equivalent length Columns under uni-axial load, buckling,	
Euler's equation for various end restraints, Rankine formula, eccentrically loaded struts,	
struts with initial curvature, lateral stability of beams; struts with lateral loading Buckling	
of Columns, RankineGordon"s empirical formula	

•

Total=48

Recommended Books		
Title	Author(s)	Publisher
Mechanics of Solids	Popov	PHI
Strength of Materials	Sadhu Singh	Khanna
Strength of Materials	Ryder G.H	ELBS
Mechanics of Solids	Gambhir	PHI
Strength of Materials	R. S. Lehri	Kataria
Strength of Materials	Pytel A H and Singer F L	Harper Collins, New Delhi

Subject Code	:	MEP-523
Title of the course	:	Strength of Materials Lab

L	Т	Р	Credits	Weekly Load
0	0	2	1	2

After successful completion of course, the students should be able to

CO1: Apply the basic concepts and principles of strength of materials.

CO2: Calculate stresses and deformations of objects under external loadings.

CO3: Analyze and design structural members subjected to tension, compression, torsion, bending and combined stresses using the fundamental concepts of stress, strain and elastic behavior of materials.

CO4: Utilize appropriate materials in design considering engineering properties, sustainability, cost and weight.

CO5: Perform engineering work in accordance with ethical and economic constraints related to the design of structures and machine parts.

Pre-requisite knowledge:

CO/PO M	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):															
COs	Progr	Programme Outcomes (POs) Program Specif											Specific			
													Outcor	Outcomes (PSO)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	3	2	3	2	2	2	3	2	2	2	1	2	1	
CO2	2	3	2	2	2	3	3	2	2	3	2	3	2	2	1	
CO3	2	2	2	3	3	2	3	3	3	2	3	2	1	2	2	
CO4	2	2	2	2	3	3	3	2	2	2	2	2	2	1	2	
CO5	3	3	2	2	2	2	2	2	2	2	2	3	2	1	1	
Average	2.4	2.4	2.2	2.2	2.6	2.4	2.6	2.2	2.4	2.2	2.2	2.4	1.6	1.6	1.4	

List of Experiments Strength of Materials lab(MEP-523)

1. Tension test

- 2. Bending tests on simply supported beam / Cantilever beam.
- 3. Torsion test
- 4. Hardness tests (Brinell and Rockwell)
- 5. Tests on closely coiled and open coiled springs
- 6. Compression test on wood or concrete
- 7. Impact test
- 8. Shear test
- 9. Fatigue Test

Title of the course : Safety in welding

Sub code

I	L	Т	Р	Credits	Weekly Load				
	3	0	0	3	3				

: MET-527

Course Outcomes:

After successful completion of course, the students should be able to:

- **CO1:** Understand various aspect of safety engineering
- **CO2:** Gainknowledge about industrial safety and hazards
- **CO3:** Able to calculate costing of accidents and hazards

CO4: Understand basic job safety analysis

CO5: Able to understand Techniques of safety Management and safety performance Planning

Pre-requisite knowledge:

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):															
COs	Programme Outcomes (POs)											Program Specific Outcomes (PSO)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	2	2	3	3	2	2	2	1	1	1	1	1
CO2	2	1	1	2	2	2	3	1	2	2	1	1	1	1	1
CO3	2	2	2	2	2	2	3	1	3	2	3	1	2	1	2
CO4	1	1	2	2	1	2	2	1	2	2	1	2	1	1	1
CO5	3	3	2	2	2	2	2	1	3	3	2	2	2	1	1
Average	1.8	1.6	1.6	2	1.8	2.2	2.6	1.2	2.4	2.2	1.6	1.4	1.4	1	1.2

Course Description	Lecture(s)
Unit -1	

Concept of safety	
Introduction, Definitions, Need of safety, Importance of safety, Factors affecting safety, safety and productivity.	05
Safety regulations	
Safety act, laws of safety, Introduction to The Factories Act 1948, Factories act amendments in 1987	07
First Aid	
Concept of first aid, Essential features of first aid, Training in first aid, first aid kits, qualified first aider.	04
Safety in welding	
Causes of hazard associated with gas and arc welding processes. Protections against electric shock, arc radiations, fumes and dust, compressed gases, fire and explosions.	08
Unit-II	
Safety precautions against fire	
Causes of industrial fire, elements of fire, preventive measures to be taken against fire, handling of the fire accidents, fire fightingequipments.	06
Safety management technique	
Safety inspections, procedures, periodicity, checklist, report form, planning for safety, Safety engineer, responsibilities of safety engineer, safety committee.	06
Safety equipments	
Various safety equipments, constructural features, handling, maintenance and repairs of safety equipments, Personnel protective equipments.	04
Safety during Welding operations	
Special precautions to be taken during welding and cutting operations like welding in confined spaces, welding of used containers, under water welding, plasma welding, welding of non ferrous metals.	08

		UG Syllabus for Welding Technology	2016 Scheme	_
Title	Author	Publisher		
1. Manufacturing management		Moore		MGH
2. Industrial Engineering		OP Khanna		
Dhanpat Rai				
3. Hand Book of Industrial Engineering	g	Maymard	MGH	
4. Welding Process and Tech.		RS Parmar		Khanna

Subject Code	:	MET-525
Title of the course	:	Kinematics of Machines

L	Т	Р	Credits	Weekly Load
3	1	0	4	4

After successful completion of course, the students should be able to

- **CO1:** Understand the working of various machines and mechanisms
- CO2: Synthesize the mechanism using various mathematical techniques.
- **CO3:** Formulate and construct the cam profile for a particular application.
- **CO4:** Analyze and suggest the suitable power transmission mechanism between two shafts.
- **CO5**: Distinguish the suitable gear for a particular application, Understand different motions with in a gear box and importance of different parts of a gear box.

Pre-requisite knowledge:

CO/PO M	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Progr	amme	Outcon	nes (PC	Ds)								Program	m S	pecific
													Outcor	nes (PSC	D)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	3	2	2	2	3	2	2	2	1	2	1
CO2	2	3	2	2	2	3	3	2	2	3	2	3	2	2	1
CO3	2	2	2	3	3	2	3	3	3	2	3	2	1	2	2
CO4	2	2	2	2	3	3	3	2	2	2	2	2	2	1	2
CO5	3	3	2	2	2	2	2	2	2	2	2	3	2	1	1
Average	2.4	2.4	2.2	2.2	2.6	2.4	2.6	2.2	2.4	2.2	2.2	2.4	1.6	1.6	1.4

Course Description	Lecture(s)
Unit-I	
Review of Mechanism & Machine	
Concepts and classification of links, pairs, kinematic symbols, kinematic chains, plane motion;	08
Constraints and degrees of freedom, mechanism and machines, inversion, conversion of	
mechanisms.	
Kinematic Analysis	
Kinematic quantities and their relationships, absolute and relative motions and their vector	10

	1
representation, instantaneous centers, Kennedy's theorem; Relative velocity method, method of	
instantaneous centres, resolution and orthogonal velocity methods; Acceleration analysis,	
Coriolis acceleration, mathematical analysis of slider crank mechanism, special graphical	
methods; Klein's construction, Ritterhau construction & Bennet construction for velocity &	
acceleration analysis of single slider crank mechanism.	
Motion Synthesis	
Graphical methods of synthesis, Chebyshev spacing, two position synthesis, application to four	06
bar mechanism, analytical synthesis using complex algebra, Freudensteins method.	
Unit-II	•
Applied Linkages	
Radial engines and mater crank, straight line motion and indicator mechanisms, steering	06
mechanisms, quick return mechanisms, intermittent motion mechanisms, Geneva mechanism,	
analog computing mechanisms, various types of ingenious mechanisms and their functioning.	
Cams	
Classification, types of motion curves and their analytical expressions, graphical construction of	08
cam profiles for different types of followers, pressure angle and cam size, cams with specified	
contours.	
Belt, Rope & Belt Drive	
Introduction, flat and V-belt drive, velocity ratio, Creep, slip in belt drive, velocity law,	06
compression in belt, tension in belt, and angle of contact, power transmission. Belt, chain and	
rope drive.	
Gears	
Introduction, Classification. Terminology. Law of Gearing Spur Gear; velocity of sliding in	04
mating teeth. Involute and Cycloidal teeth & their construction and comparison. Involute Profile	
Gears; Length of path of contact, Contact Ratio, Interference, number of teeth on wheel, pinion	
& rack to avoid interference. Introduction to helical and worm gears.	

Total=48

- 1. Martin, G.H., "Kinematics and Dynamics of Machines", 3rd Ed., McGraw-Hill, 1982
- 2. Ghosh, A., and Mallik, A.K., "Theory of Mechanisms and Machines", 2nd Ed., Affiliated East-West Press, 2003.
- 3. Bevan, T., "Theory of Machines", 3rd Ed., CBS Publishers 2003.
- 4. Vicker, J.J., Shigley, J.E., and Penock, G.R., "Theory of Machines and Mechanisms", 3rd Ed., Oxford University Press, 2003.
- 5. Hannah, J., and Stephens, R.C., "Mechanics of Machines: Elementary Theory and Examples", 4th Ed., Viva Books, 2004.
- 6. Rattan S.S., "Theory of Machines", TMH, New Delhi, 2010.

Subject Code	:	MEP-525
Title of the course	:	Kinematics of Machines Lab

L	Т	Р	Credits	Weekly Load
0	0	2	1	2

After successful completion of course, the students should be able to

- **CO1:** Understand the working of various machines and mechanisms
- **CO2:** Synthesize the mechanism using various mathematical techniques.
- **CO3:** Formulate and construct the cam profile for a particular application.
- **CO4:** Analyze and suggest the suitable power transmission mechanism between two shafts.
- CO5: Distinguish the suitable gear for a particular application, Understand different motions with in a gear box and importance of different parts of a gear box.

Pre-requisite knowledge:

CO/PO M	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Progr	Programme Outcomes (POs)											Program	m S	pecific
													Outcomes (PSO)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	3	2	2	2	3	2	2	2	1	2	1
CO2	2	3	2	2	2	3	3	2	2	3	2	3	2	2	1
CO3	2	2	2	3	3	2	3	3	3	2	3	2	1	2	2
CO4	2	2	2	2	3	3	3	2	2	2	2	2	2	1	2
CO5	3	3	2	2	2	2	2	2	2	2	2	3	2	1	1
Average	2.4	2.4	2.2	2.2	2.6	2.4	2.6	2.2	2.4	2.2	2.2	2.4	1.6	1.6	1.4

List of Experiments Kinematics of Machines lab

- 1. Study of kinematic pairs and kinematic chain.
- 2. Study of different kinds of planar mechanism; four bar mechanism, single slider crank mechanism, double slider mechanism.
- 3. Construction of velocity and acceleration diagram for planar mechanism.
- 4. Demonstration of different kinds of CAM and Follower arrangements.
- 5. Construction of CAM with different types of followers for various kind of motion.
 - a. Knife edge follower with various kind of motion.
 - b. Roller follower with various kind of motion.
 - c. Flat faced follower with various kind of motion.

- d. Spherical faced follower with various kind of motion.
- 6. Demonstration of different types of Gears.
- 7. Generation of profile of Gear teeth
 - a. For Involute profile
 - b. For Cycloidal profile.

Title of the course	: Numerical Analysis
---------------------	----------------------

Subject Code : AMT- 611

L	Т	Р	Credits	Weekly Load
3	1	0	4	4

CO1: Apply Numerical analysis which has enormous application in the field of Science and some fields of Engineering.

CO2: Familiar with numerical solutions of nonlinear equations in a single variable.

CO3: Familiar with numerical integration and differentiation, numerical solution of ordinary differential equations.

CO4: Familiar with calculation and interpretation of errors in numerical method.

CO5: Familiar with programming with numerical packages like MATLAB.

Pre-requisite knowledge:

	CO/I	PO Ma	pping:	(Stron	g(3) /	Mediu	m(2) /	Weak	(1) ind	icates	streng	th of c	orrelatio	on):	
				Pı	rogram	nme Oi	utcom	es (PO	s)				_	ram Spe comes (F	
COs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	1	1	2	2	1	1	1	1	1	2	2	2	1	2	2
CO2	2	2	1	2	1	1	1	1	1	1	1	2	2	3	1
CO3	2	3	3	2	2	1	2	2	2	3	2	3	3	1	2
CO4	3	3	3	3	3	3	2	3	2	2	1	2	1	2	3
CO5	2	1	2	3	3	3	2	2	2	2	2	3	1	2	2
Averag e	2	2	2.2	2.4	2	1.8	1.6	1.8	1.6	2	1.6	2.4	1.6	2	2

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	1. Errors	Errors in arithmetic operations and functions. Round-off error, truncation error. Absolute error. Relative error.	

		Percentage error. Principles of equal effect. Significant digits.	4
	2. Roots of equations	Intermediate value property. Bisection method. Method of false position. Secant Method. Newton-Raphson method. Iteration method. Convergence of these methods.	6
	3. Solution of linear equations	Gauss Elimination method (with and without partial pivoting). Gauss-Seidel, Jacobi's methods. Triangularization method.	5
	4. Eigenvalue	Rayleigh's power method for finding dominant eigenvalue.	4
	5. Finite differences	Finite differences-forward, backward and central differences. Shift and averaging operators.	4
Unit-2	6. Interpolation	Newton's forward, backward and divided difference interpolation formulae. Lagrange's formula. Gauss forward and backward difference interpolation formulae. Spline interpolation–quadratic and cubic.	7
	7. Numerical differentiation and integration	Numerical differentiation using Newton's forward and backward difference formulae. Numerical integration – Trapezoidal rule, Simpson's one third and three-eighth rules. Romberg's integration. Error in integration.	
			8
	8. Numerical solution of ODEs	Taylor series method. Picard's method. Euler method. Modified Euler's method. Runge-Kutta methods (upto fourth order) for solution of ODE of first order.	7

Total=45

- 1. S.S. Sastry, Introductory Method of Numerical Analysis, PHI.
- 2. Gerald Wheatley, Applied Numerical Analysis, Pearsons Education.
- 3. M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Sc. and Engg. Computation.
- 4. J.H. Mathew, Numerical Methods for Maths., Science and Engg., PHI.

Title of the course : Numerical Analysis Lab

Subject Code : AMP- 611

Ι		Т	Р	Credits	Weekly Load
0)	0	2	1	2

CO1: Solve nonlinear equations and system of linear equations.

CO2: Find largest eigen value of a square matrix.

- CO3: Use various interpolation formulae.
- CO4: Find numerical differentiation and integration.
- CO5: Solve numerically by using various techniques.

Pre-requisite knowledge:

	CO/I	PO Ma	pping:	(Stron	ıg(3) /	Mediu	m(2) /	Weak	(1) ind	icates	streng	th of c	orrelatio	on):	
				Pi	rogram	nme O	utcom	es (PO	s)				-	ram Spe comes (F	
COs	PO1	РО 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
C01	3	3	2	1	0	0	0	0	0	1	0	2	2	3	2
CO2	3	3	2	1	0	0	0	0	0	1	0	2	2	3	2
CO3	3	3	2	1	0	0	0	0	0	1	0	2	2	3	2
CO4	3	3	2	1	0	0	0	0	0	1	0	2	2	3	2
CO5	3	3	2	1	0	0	0	0	0	1	0	2	2	3	2
Averag e	3	3	2	1	0	0	0	0	0	1	0	2	2	3	2

List of Programmes

- 1. Finding roots of the equation f(x) = 0 using
 - i) Bisection Method ii) Secant Method
- iii) Method of false position

2. Finding roots of the equation f(x) = 0 using

i) Iterative Method ii) Newton - Raphson's Method

3. To check consistency and finding Solution of a system of linear	algebraic equations using
i) Gauss elimination Method ii) Gauss - Seidal Method	iii) Jacobi Method

4. Interpolation usingi) Newton's forward difference formula	ii) Newton's backward difference formula
5. Interpolation usingi) Newton's divided difference formula	ii) Lagrange's interpolation formula
6. Numerical differentiation usingi) Newton's forward interpolation formula	ii) Newton's backward interpolation formula
 7. Numerical Integration using i) Trapezoidal rule iii) Simpson's 3/8th rule 	ii) Simpson's 1/3 rd rule
8. Solution of I st order ordinary differential equations	6
i) Taylor's series method	ii) Picard's method
iii)Euler's method	iv) Euler's modified method

9. Solution of Ist order ordinary differential equations using Runge-Kutta methods.

10.	Fitting a curve using given data.	
	i) linear curve	ii) quadratic curve
	iii) cubic curve	iv) any other

- 11. Finding the following, using given data:
 - i) mean, median and mode.
 - ii) standard deviation and mean deviation.
 - iii) moments, skewness and kurtosis of various order.
 - iv) rank correlation.

Subject Code : **MET-611**

Title of the course **Dynamics of Machines** :

L	Т	Р	Credits	Weekly Load
3	1	0	4	4

Course Outcomes:

After successful completion of course, the students should be able to

- To expand students knowledge of planar kinematic analyses of rigid body and simple, compound, reverted, CO1: epicyclical gear train systems.
- CO2: To teach the student about the basic concepts of flywheel and governors and their applications to different situations.
- CO3: To understand the basic laws of friction and its application to clutches, Power screws, brakes
- CO4: Understandconcepts of static and dynamic mass balancing and concept of gyroscope
- CO5: To understand the concepts of natural, damped and forced vibrations. Also apply it for solving complex problems of vibration

COs	Prog	ramme	e Outc	omes	(POs)								Progra	-	pecific
													Outco	mes (PS	SO)
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	3	2	3	2	2	2	3	2	2	2	1	2	1
CO2	2	3	2	2	2	3	3	2	2	3	2	3	2	2	1
CO3	2	2	2	3	3	2	3	3	3	2	3	2	1	2	2
CO4	2	2	2	2	3	3	3	2	2	2	2	2	2	1	2
CO5	3	3	2	2	2	2	2	2	2	2	2	3	2	1	1
Avera ge	2.4	2.4	2.2	2.2	2.6	2.4	2.6	2.2	2.4	2.2	2.2	2.4	1.6	1.6	1.4

Pre-requisite knowledge:

Course Description	Lecture(s)
Unit-I	
Gear Trains	
Introduction of simple, compound, reverted, epicyclic gear train & compound epicyclic gear train. Tooth load & torque in gear trains.	04
Force Analysis of Mechanisms	
Concept of free body and its equilibrium, static force analysis, friction effects, forces on gear teeth; D'Alembert's principle, dynamic force analysis, force analysis of cam- follower system, equivalent dynamical systems, dynamic analysis of reciprocating engines, practical examples from actual machines.	04

Flywheel	
Introduction, an approximate analysis, Fluctuation of energy and speed, energy in	05
flywheel, calculation of flywheel size; Flywheel in punching, inertia force analysis of	
reciprocating engine.	
Governors	
Type of governors, function of governors, Analysis of different types of governors,	07
controlling force diagrams, sensitivity analysis, stability of governors, isochronous	
governors, hunting, power and efforts of governors.	
Friction	0.4
Introduction, law of friction, Coulomb friction, pivot and roller friction, flat pivot and	04
conical pivot, flat collar pivot, single and multiple clutches, cone clutch.	
Friction Drives	
Introduction, Power screws, band and block brakes.	04
Balancing	
Balancing of rotating masses on one plane and in different parallel planes,	08
balancing of slider crank mechanisms, balancing of in-line, V- and locomotive	
engines, principles of balancing machine.	
Gyroscope	
Introduction. Principle of gyroscope. Gyroscopic couple. Direction of vector	06
with forced precession. Analysis of precession due to forced precession of	
rotating disc mounted on shaft. Motion of rigid body with reference to Euler's	
equations. Effect of gyroscopic couple. Stability of two wheeler, four wheeler,	
sea vessels and aircraft with numerical problems.	
Mechanical Vibration	
Simple harmonic motion; Conservative systems; Free vibrations of systems	06
without damping; Equilibrium and energy methods for determining natural	
frequency; Rayleigh's	
method, free vibrations of system with viscous damping, over damped, critically	
and under damped systems, logarithmic decrement; Forced vibrations of	
systems with viscous damping, equivalent viscous damping; Impressed forces	
due to unbalanced masses and excitation of supports, vibration isolation,	
transmissibility.	
Total=48	L

- 1. Vicker, J.J., Shigley, J.E., and Pennock, G.R., "Theory of Machines and Mechanisms", 3rd Ed., Oxford University Press, 2003.
- 2. Vinogradov, O., "Fundamentals of Kinematics and Dynamics of Machines and Mechanisms", CRC Press, 2000.
- 3. Massie, H.H., and Reinholtz, C.F., "Mechanisms and Dynamics of Machinery", 4th Ed., John Wiley & Sons, 1987.
- 4. Grover, G.K., "Mechanical Vibrations", 7th Ed., Nem Chand and Brothers, 2003.
- 5. Thomson, W.T., "Theory of Vibration with Applications", 3rd Ed., CBS Publishers, 2003.
- 6. Rattan S.S., "Theory of Machines", TMH, New Delhi, 2010.

Subject Code	:	MEP-611
Title of the course	:	Dynamics of Machines Lab

L	Т	Р	Credits	Weekly Load
0	0	2	1	2

After successful completion of course, the students should be able to

- **CO1:** To expand students knowledge of planar kinematic analyses of rigid body and simple, compound, reverted, epicyclical gear train systems.
- **CO2:** To teach the student about the basic concepts of flywheel and governors and their applications to different situations.
- CO3: To understand the basic laws of friction and its application to clutches, Power screws, brakes
- **CO4:** Understand concepts of static and dynamic mass balancing and concept of gyroscope
- **CO5**: To understand the concepts of natural, damped and forced vibrations. Also apply it for solving complex problems of vibration

Pre-requisite knowledge:

	CO/	PO Ma	apping	: (Stro	ong(3)	/ Med	ium(2)) / We	ak(1) i	ndicate	s streng	gth of c	orrelation	on):		
COs	Prog	Programme Outcomes (POs)												Program Specific Outcomes (PSO)		
	PO PO PO PO PO PO PO PO PO PO1 PO1 PO1										PO1	PSO	PSO	PSO		
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	
CO1	3	2	3	2	3	2	2	2	3	2	2	2	1	2	1	
CO2	2	3	2	2	2	3	3	2	2	3	2	3	2	2	1	
CO3	2	2	2	3	3	2	3	3	3	2	3	2	1	2	2	
CO4	2	2	2	2	3	3	3	2	2	2	2	2	2	1	2	
CO5	3	3	2	2	2	2	2	2	2	2	2	3	2	1	1	
Avera ge	2.4	2.4	2.2	2.2	2.6	2.4	2.6	2.2	2.4	2.2	2.2	2.4	1.6	1.6	1.4	

List of Experiments Dynamics of Machineslab(MEP-611)

- 1. Different types of Gear train.
- 2. Determination of moment of inertia for flywheel.
- 3. Different types of Governors.
- 4. Determination of height of Governor for varied spindle speed.
- 5. Demonstration of various types of Clutches and Brakes.
- 6. Determination of position and orientation of masses for balancing in different planes.

8. Demonstration of whirling of shaft.

Subject Code	:	MET-612C
Title of the course	:	Quality Reliability & Maintainability

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

After successful completion of course, the students should be able to

CO1: Plot control charts for variables and attributes

CO2: Conduct inspection and control the process quality

CO3: Understand ISO standard & TQM approaches

CO4: Conduct reliability testing of products

CO5: Implement various types of maintenance strategies in the plant

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):															
COs	Programme Outcomes (POs) Programme Outcomes (POs)													rogram Specific		
														Outcomes (PSO)		
	РО	РО	РО	PO	PO	PO	РО	PO	РО	PO1	PO1	PO1	PSO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	
CO1	3	3	3	3	3	1	2	1	1	1	1	1	1	2	1	
CO2	3	3	3	3	3	1	2	2	1	3	2	1	3	2	1	
CO3	3	3	3	3	3	1	2	1	1	1	1	1	1	1	1	
CO4	3	3	3	3	3	1	2	1	1	1	1	1	1	2	1	
Avera	3	3	3	3	3	1	2	1.2	1	1.5	1.25	1	1.5	1.75	1	
ge								5								

Course Description	Lecture(s)				
Unit-I					
Quality Control	08				
Introduction, statistical control of processes, control charts for variables – X & R Charts, X & s					
Charts , properties of control charts, control charts for attributes – p chart, np chart, 100p chart, c					
chart, process capability analysis.					
Quality assurance and acceptance control					
Objectives of acceptance control, hypothesis testing in acceptance control, average outgoing					
quality, lot-by-lot acceptance sampling by attributes, acceptance procedures based on AQL.					
Total Quality Management	08				
Evolution of quality management, ISO standards, TQM approach, implementation of TQM,					
TQM critical success factors, Six Sigma implementation methodology.					
Unit-II					
Reliability	12				

Introduction, failure data, mean failure rate, mean time to failure, mean time between failure,	
hazard rate, system reliability, series configuration, parallel configuration, mixed configuration,	
reliability improvement.	
Maintainability	12
Introduction, maintenance types- breakdown maintenance, shut down maintenance, corrective	
maintenance, preventive maintenance, predictive maintenance, productive maintenance, total	
productive maintenance, maintainability, availability, maintenance management, condition based	
management, Life Cycle costing.	
T () 40	

Total = 48

Title	Author(s)	Publisher						
Industr	ial Maintenance	Management		Sushil Kumar S	rivastava	S Chand & Co.		
Mainte	nance Engineeri	ng Mish	nra	PHI				
Reliabi	ility, Maintenanc	e and Safety		A.K.Gupta University Science				
Engine	ering	Press						
Reliabi	ility Engineering	L.S. Srinath		East-West Press	5			

Subject Code	:	MET-612D
Title of the course	:	Weldability of engineering materials

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

After successful completion of course, the students should be able to

- **CO1:** Understand the concept of weldablity.
- CO2: Understand various problems related to weldability .
- CO3: Learn basic principles and methods utilized for testing weldability.
- **CO4:** Apply the knowledge of weldability for various material alloy systems that are commonly used in commercial welding and manufacturing.
- CO5: Apply theknowledge and skill for improvement of weldability for various materials .

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):																
Cos	Prog	Programme Outcomes (POs) Pr													Program Specific		
															Outcomes (PSO)		
	РО	PO	PO	РО	PO	РО	РО	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO		
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3		
CO1	2	3	3	1	3	1	1	1	3	3	3	2	1	1	1		
CO2	2	3	2	1	2	1	1	2	2	2	3	2	1	1	2		
CO3	2	3	3	1	3	1	2	1	2	2	3	2	1	2	1		
CO4	2	3	3	3	3	1	1	1	2	2	3	2	1	1	1		
CO5	2	3	3	1	3	1	2	1	2	2	3	3	1	2	1		
Avera	2	3	2.8	1.4	2.8	1	1.4	1.2	2.2	2.2	3	2.2	1	1.4	1.2		
ge																	

Course Description	Lecture(s)
Unit-I	
Weldablity	06
Concept, factors effecting weldablity, weldablity tests, Hot and cold cracking tests.	
Weldablity of cast irons	06
Welding issues related to cast irons (Gray cast iron, white cast iron and malleable cast	
iron).	
Weldablity of carbon steels	06

Weldablity of low carbon steel, medium carbon steels and high carbon steels.	
Weldablity of stainless steels	06
Weldablity of austenitic, ferritic, martensitic stainless steels.	
Unit-II	
Weldablity of copper and its alloys	06
Weldablity factors, welding of copper and its alloys, brazing and soldering of copper	
and its alloys	
Weldablity of aluminium and its alloys	06
Welding of aluminium and its alloys (GTAW and GAW), problems associated with	
welding of aluminium.	
Weldablity of magnesium and nickel alloys	08
Welding of magnesium and nickel alloys, problem associated with welding of these	
alloys.	
Welding of plastics	04
Weldablity of engineering plastics, fabrication techniques.	
Total=48	·

Recommended Doons		
Title	Author(s)	Publisher
Welding Engineering & Technology	R. S. Parmar	Khanna Publications
Modern Arc Welding Technology	S. V. Nadkarni	Oxford & IBH.
AWS Welding Handbook, Volume-1	Leonard. P. Connor	AWS
Method of Testing Fusion Welded Joints	IS-3600 (Part-I & II)	BIS, New Delhi
and Weld Metals in Steel		
Welding Technology	O P Khanna	Dhanpat Rai

Subject Code	: MET-612E
Title of the course	: Estimation and Costing

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

COURSE OUTCOMES:

The theory should be taught in such a manner that students are able to acquire different learning objectives in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

CO1: Calculate material cost of given component/product.

CO2: Identify and estimate elements of cost in various processes.

CO3: Perform break even analysis to calculate break even quantity.

CO4: Investigate the problem of cost and suggest their solution using cost reduction techniques. **CO5:** Prepare simple engineering contract.

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
Cos	Prog	Programme Outcomes (POs) Program Specifi Outcomes (PSO													
	PO	PO P									PS	PS			
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
CO1	3	3	3	3	3	1	1	1	2	2	3	3	3	1	1
CO2	3	3	3	3	3	1	2	1	2	2	2	3	1	3	1
CO3	3	3	3	3	3	1	1	2	2	2	2	3	2	2	2
CO4	3	3	3	3	3	1	1	1	2	2	2	3	2	2	2
CO5	3	3	3	3	3	1	1	3	2	2	2	3	2	2	3
Avera ge	3	3	3	3	3	1	1.2	1.6	2	2	2.2	3	2	2	1.8

	Course Description	Lecture						
Unit-I	Introduction							
	Need, Scope & importance of Estimation, Costing & Contract in							
	industries. Difference between costing and estimating. Terminology							
	associated with various cost elements, overheads, their classification and							
	allocation. Determination of selling price and catalogue price.							
	Elements of costing							
	Cost structure, Components of cost, overheads, types and methods of							
	computing overheads, depreciation and obsolescence: Definition, types,							
	different methods of calculating depreciation, numerical examples.							
	Estimation of volume, weight and cost of materials for various products.							
	Concept of Machine Hour Rate (MHR) and process hour rate (PHR).							
	Method to calculate MHR for any machine/machine tool. (Lathe,							

UG Syllabus for Welding Technology	

	Milling, Drilling, Grinding and Press tool). Method to calculate PHR for	
	any process. PHR of running diesel generating set, welding and gas	
	cutting. Estimation of Material cost.	
Unit-II	Estimation in welding Shop	04
01111-11		04
	Factors effecting arc welding cost, Estimate cost of consumables and	
	production for a given job using different welding methods.	0.6
	Estimation in other shops	06
	Estimation of cost of different products produced in machine shop (for	
	various machining operations- turning, milling, drilling, boring, tapping,	
	shaping, grinding, and planning).	
	Foundry shop (Estimate cost of material, pattern and production for a	
	casting component).	
	Forging shops (Estimate cost of material, forging dies and production	
	cost for a forging component).	
	Understand importance of estimating various process costs. Identify the	
	elements required to estimate the process cost.	
	Budgeting and contracting	08
	Define budget and budgetary control. Purpose and benefits of budget.	
	Various types of budgets. Interpret industrial budget. Prepare simple	
	budget given required input data. Explain various accounting	
	terminology like book value, Net Present Value, Work in progress,	
	Gross Domestic Product (GDP), balance sheet terminology, etc.	
	Introduction to different contracts, its characteristics and advantages.	
	Tendering, manual tendering and E-tendering. Provision of different	
	conditions in a contract. Documents required in an engineering contract.	
	conditions in a contract. Documents required in an engineering contract.	I

Recommended Books				
Title	Author(s)	Publisher		
	Text			
Mechanical Estimating and Costing	B P Sinha	Tata McGraw Hill, New Delhi		
	Reference			
Mechanical estimating and Costing	TTTI, Madras	Tata McGraw Hill		
Production Engineering, Estimating	M Adithan and B S	Konark Publishers, New Delhi		
and Costing	Pabla			
Mechanical estimating and costing	Banga and Sharma	Khanna Publishers		
Mechanical costing and estimation	Singh & Khan	Khanna Publishers		
Learning package in ECC	NITTTR, Bhopal	NITTTR, Bhopal		

Subject Code	:	MET-613
Title of the course	:	Heat and Mass Transfer

ĺ	L	Т	Р	Credits	Weekly Load
ĺ	3	1	0	4	4

After successful completion of course, the students should be able to

- CO1: Understand fundamentals of different types of modes of Heat transfer.
- **CO2:** Apply various mode of heat transfer to actual problems.
- CO3: Understand various types of boiler.
- CO4: Application of different type of Heat exchanger.

CO5: Understanding of Radiation and Mass-Transfer

Pre-requisite knowledge:

(CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Programme Outcomes (POs)								Program Specific						
													Outco	mes (P	SO)
	РО	РО	PO	РО	PO	РО	РО	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	3	3	2	2	2	2	2	2	2	2	2	1	1
CO2	2	3	3	3	2	2	2	2	2	2	3	2	2	3	1
CO3	2	2	2	3	2	2	2	2	3	2	2	2	1	3	2
CO4	2	3	2	2	2	2	2	2	2	2	2	2	2	1	2
CO5	3	3	3	2	2	2	3	2	3	2	2	3	1	1	1
Avera	2.4	2.6	2.6	2.6	2	2	2.2	2	2.4	2	2.2	2.2	1.6	1.8	1.4
ge															

Course Description	Lecture(s)
Unit-I	
Introduction	
Different modes of heat transfer: conduction, convection, radiation.	6
Conduction	
Fourier's law of heat conduction, thermal Conductivity, effect of temperature and	6
pressure on thermal conductivity of solid, liquid.	
Three dimensional general conduction equations in rectangular cylindrical and	
spherical coordinates.	
Electrical analogy for solving 1-D steady state conduction problem for slab,	

2016
Scheme

cylinder, sphere and influence of variable thermal Conductivity.	
Application of conduction	
Straight and circular fins of rectangular cross-section, optimum design of	6
rectangular fin, efficiency of fin, fin effectiveness for rectangular and circular	
cross section fins. Application of fins in temperature measurement of flow In	
tubes. Critical radius of insulation for pipes and electrical cables. Introduction to	
unsteady state heat transfer.	
Convection	
Free and forced convection, derivation, mass, momentum and energy equations.	6
Concept of boundary layer, boundary layer thickness. Heat transfer coefficient.	
Heat transfer in laminar and turbulent flow over plates, tubes using empirical	
relations.	
Dimensional analysis for forced and free convection	
Unit-2	
Boiling and Condensation	6
Introduction, boiling phenomena, pool boiling regimes, condensation drop-wise	
and film-wise.	
Heat Exchangers	
Overall coefficient of heat transfer, different design criterion of heat exchangers	6
(LMTD & NTU methods), calculation of number, diameter & length of tubes,	
mean temperature difference for parallel & counter flow heat exchangers.	
Radiation	
Laws of radiation, definition of - emissivity, absorbitivity, reflectivity and	6
transmissivity. Concept of black and grey bodies Planck's law monochromatic	
radiation, Kirchoff's law and the geometric factor.	
Lambert's cosine law, definition of intensity of radiation, radiation exchange	
between simple bodies, two parallel surfaces, concentric cylinders, furnace walls,	
using definition of radiosity and irradiation, radiation shields, simple	
Mass Transfer	
Mass transfer process : classification, Concentrations, velocities and fluxes, Fick's	6
law, General equation of mass diffusion, Steady state diffusion through a plain	
membrane,Equimolal diffusion.	
 ۲	Total-48

Recommended Books		
Title	Author(s)	Publisher
Heat and Mass Transfer	R. K. Rajput	S. Chand
Heat Transfer	J.P. Holman	ТМН
Heat and Mass Transfer	R.C. Sachdeva	New Age International
Heat and Mass Transfer	R. Yadav	Central Publishing House
Heat Transfer	P.K.Nag	ТМН
Heat Transfer	Domkundwar	Dhanpat Rai

Subject Code	:	MEP-613
Title of the course	:	Heat and Mass Transfer Lab

L	Т	Р	Credits	Weekly Load
0	0	2	1	2

After successful completion of course, the students should be able to

- CO1: Understand fundamentals of different types of modes of Heat transfer.
- **CO2:** Apply various mode of heat transfer to actual problems.
- CO3: Understand various types of boiler.
- CO4: Application of different type of Heat exchanger.

CO5: Understanding of Radiation and Mass-Transfer

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Programme Outcomes (POs)									Program Specific					
													Outco	mes (P	SO)
	PO PO PO PO PO PO PO PO PO PO1 PO1 PO1											PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	3	3	2	2	2	2	2	2	2	2	2	1	1
CO2	2	3	3	3	2	2	2	2	2	2	3	2	2	3	1
CO3	2	2	2	3	2	2	2	2	3	2	2	2	1	3	2
CO4	2	3	2	2	2	2	2	2	2	2	2	2	2	1	2
CO5	3	3	3	2	2	2	3	2	3	2	2	3	1	1	1
Avera	2.4	2.6	2.6	2.6	2	2	2.2	2	2.4	2	2.2	2.2	1.6	1.8	1.4
ge															

LIST OF EXPERIMENTS

- 1. To determine the Thermal Conductivity of a Metal Bar.
- 2. To determine the total Thermal resistance and thermal conductivity or a composite wall.
- 3. To find out the convective heat transfer coefficient in a vertical cylinder in nature convection mode and also compare the results while using suitable empirical relation for the given configuration.
- 4. To find out heat transfer coefficient in forced convection mode and also compare the results while using suitable empirical relation for the given configuration.
- 5. To find the thermal conductivity of insulating powder using sphere configuration.
- 6. To study the parallel & counter type heat exchanger & find out overall heat transfer coefficient and effectiveness of the heat exchanger for both parallel and counter type flow of heat exchanger.
- 7. To study the critical heat flux at various temp. or distilled water and, compare the result of critical heat flux at saturated condition with zubcr's co-relation.
- 8. To verify the Stefan Boltzmann constant help or the given experimental setup.
- 9. To find out the emissivity of the test plate at various surface temperatures

Subject Code : MET-616

Title of the course : Advanced Welding Processes

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

- CO1: Apply the knowledge of welding fundamentals to solve welding problems.
- CO2: Select a suitable welding process for a particular application.
- CO3: Prepare a WPS for a particular application.
- CO4: Understand the impact of welding operations on environment and need for sustainable development
- CO5: Apply the ethical principles regarding health, safety and legal issues during operations of welding machines

Pre-requisite knowledge: Conventional Welding Processes

CO/P	O Map	ping: (Strong	(3) / M	edium(2) / W	eak(1)	indicat	es stre	ngth of	correl	ation):			
CO	Progra	amme	Outcon	nes (PC	Ds)								Progr	am Sp	ecific
S	Outcomes (PSC													PSO)	
	PO1	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PS	PS	PS
		2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO	3	3	3	3	3	3	3	3	3	3	1	1	1	2	2
1															
CO	3	3	2	3	2	1	3	2	2	1	3	1	1	1	1
2															
CO	2	2	2	2	3	1	3	2	2	2	2	2	1	1	2
3															
CO	2	2	2	3	3	1	3	2	2	2	2	2	1	2	1
4															
CO	2	2	2	2	3	1	3	2	2	2	2	3	1	1	1
5															
Ave	2.4	2.4	2.2	2.6	2.8	1.4	3	2.2	2.2	2	2	1.8	1	1.4	1.4
rage															

Course Description	Lecture(s)
Unit-I	
Solid State Welding Processes	
Friction and friction stir welding, explosive welding, diffusion bonding, ultrasonic welding-Basic	08
principle, process variables, weld characteristics and applications.	
Thermit Welding	
Principle of operation, thermit mixtures, area of application.	06
Surfacing and Thermal Spraying	

Total=48

Introduction to surfacing, type of surfacing (cladding, hard facing, built-up and buttering), different	10
welding methods used for surfacing, different surfacing materials used and their characteristics,	
introduction to spraying, different spraying methods and applications.	
Unit-II	
Electro Slag and Electro Gas Welding	
Principle of operation, equipment-power source, wire feeder and oscillator, guide tube consumable	09
and non consumable, retaining shoes, welding head with control, travel carriage, process variation,	
advantages, disadvantages and applications, comparison between EGW and ESW.	
Electron Beam Welding	
Principle of operation, equipment details, EBW in different degree of vacuum- high, medium and	09
non vacuum, process characteristics (key hole penetration), process variables (acceleration voltage,	
beam power, spot size, travel speed, powder density), advantages, disadvantages and applications.	
Laser Beam Welding	
Principle of operation, different laser medium (CO ₂ , Ruby and Nd-YAG), advantages, limitation	06
and applications.	

- 1. Welding Processes and Technology by R.S Parmar (Publisher: Khanna Publishers)
- 2. Modern Arc Welding Technology by S.V. Nadkarni (Publisher: Oxford & IBH)
- 3. Modern Arc Welding Technology by Hobart B. Cary (Publisher; Prentice Hall Cambridge Univ. Press)

Subject Code : **MEP-616**

Title of the course **Advanced Welding Processes** :

L	Т	Р	Credits	Weekly Load
0	0	4	2	4

Course Outcomes:

After successful completion of course, the students should be able to

Apply the knowledge of welding fundamentals to solve welding problems. CO1:

CO2: Select a suitable welding process for a particular application.

CO3: Prepare a WPS for a particular application.

- CO4: Understand the impact of welding operations on environment and need for sustainable development
- CO5: Apply the ethical principles regarding health, safety and legal issues during operations of welding machines

Pre-requisite knowledge: Conventional Welding Processes

CO/P	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
CO s	Programme Outcomes (POs)									Program Specific Outcomes (PSO)					
	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO 1	3	3	3	3	3	3	3	3	3	3	1	1	1	2	2
CO 2	3	3	2	3	2	1	3	2	2	1	3	1	1	1	1
CO 3	2	2	2	2	3	1	3	2	2	2	2	2	1	1	2
CO 4	2	2	2	3	3	1	3	2	2	2	2	2	1	2	1
CO 5	2	2	2	2	3	1	3	2	2	2	2	3	1	1	1
Ave rage	2.4	2.4	2.2	2.6	2.8	1.4	3	2.2	2.2	2	2	1.8	1	1.4	1.4

Experiment No	Name of Experiment
1.	To Learn the Safety and Precaution during the working on welding machine
2.	Demonstration and practice of resistance spot welding on zinc coated steel sheet
3.	To perform nugget test on specimen prepared by spot weld
4.	To perform flash butt welding on M.S round bar
5.	Demonstration and practice of underwater welding
6.	To join thin sheets by soldering using electrical operated soldering iron
7.	Demonstration and practice of friction welding
8.	Preparation of Lap joint by brazing
9.	Preparation and welding of lap joint by gas welding process

10.	Hard facing on given job by MMAW
-----	----------------------------------

Subject Code **MEO-621** : Title of the course : **CONCURRENT ENGINEERING**

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

- CO1: Should have basic knowledge of concurrent engineering for enhancement of product quality.
- **CO2:** Should be able to apply the knowledge for design manufacturing assembly, quality function deployment, rapid prototyping and total design integration.
- CO3: To apply concurrent technique for design inspection and testing for product design and development process.
- CO4: To apply latest techniques resources engineering and IT tools for modeling and simulation of engineering systems
- CO5: To demonstrate knowledge and understanding of concurrent engineering and management principle for integrating concurrent design and product development and consistent network

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Prog	Programme Outcomes (POs) Program Specific													
													Outco	mes (P	SO)
	РО	PO	PO	РО	РО	РО	РО	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	1	1	2	2	1	1	1	2	1	2	1	1	1
CO2	3	3	1	2	3	2	2	1	2	1	2	2	1	1	2
CO3	3	3	3	3	3	3	2	3	3	3	1	2	1	2	1
CO4	3	3	2	3	3	2	3	2	3	1	2	1	2	2	2
CO5	3	3	3	3	3	3	3	3	3	1	3	3	1	1	1
Avera	3	3	2	2.4	2.8	2.4	2.2	2	2.4	1.6	1.8	2	1.2	1.4	1.4
ge															

Course description	Lectures
UNIT-I	
Introduction	12
Concurrent Engineering Definition, Product life cycle, quality products, evaporative	
markets, globalization and concurrent engineering	

Concurrent Engineering Techniques	12
Review of concurrent engineering techniques like DFM (design for manufacture). DFA	
(design for assembly), QFD (quality function deployment), RP (rapid prototyping), TD	
(total design) for integrating these technologies.	
UNIT-II	
Product Design & Development Process	12
Product information systems and their Mechanical Engineering architecture. Information	
environment for Suppliers, management, testing & inspection design engineering,	
purchasing, process control, manufacturing, support plans, operators, quality control,	
servicing and maintenance.	

Product and Process Integration	12
Product information modeling. Integration of information models and end users	
applications. Computer aided simultaneous engineering systems. Integrated concurrent	
design and product development. Constraint networks.	

Recommended Books							
Title	Author(s)	Publisher					
Integrated Product and Process	John M. Usher, Utpal Roy and H. R.	Tata McGraw Hill					
Development	Parasaei						
Product Design and Manufacture	A. K. Chitale and R. C. Gupta	PHI					
Engineering Design and Design for	John R. Dixon and CorrodoPoli	Field Stone					
Manufacturing: A structured approach		Publishers, USA					
Material Selection in Mechanical Design	M. F. Ashby	Elsevier					
Concurrent Engineering	Biren Prasad	Prentice Hall					
Product Design & Development	Karl T. Ulrich, Steven D. Eppinger	TMHI					

Subject Code	:	MEO-622
Title of the course	:	SYSTEM DYNAMICS AND CONTROL

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

After successful completion of course, the students should be able to

- CO1: Identify the Physical systems using Bond Graphs
- **CO2:** Apply METLAB for simulation and dynamics.
- CO3: Design and analysis of control system for linear and non-linear systems
- CO4: Perform Stability analysis
- **CO5**: Analyze dynamical system using bond graph.

Pre-requisite knowledge:

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

<u> </u>													~ ~			
COs	Programme Outcomes (POs)												Program Specific			
														Outcomes (PSO)		
	РО	PO	PO	РО	РО	РО	PO	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	
CO1	3	3	3	2	2	2	1	1	1	2	3	3	2	2	1	
CO2	3	3	3	2	2	2	2	1	2	3	3	3	1	1	2	
CO3	3	3	3	3	3	3	2	3	3	3	3	3	2	2	1	
CO4	3	2	3	2	2	2	3	2	3	3	3	3	2	2	2	
CO5	3	3	3	2	2	3	3	3	3	3	3	3	1	2	1	
Avera	3	2.8	3	2.2	2.2	2.4	2.2	2	2.4	2.8	3	3	1.6	1.8	1.4	
ge																

Main Topics & Course Outline	Lectures
UNIT-I	
Introduction	12
Introduction to Physical System Dynamics	
Modeling of Physical System Dynamics: A Unified Approach	
Physical systems, Introduction to Bond graphs,	
Ports, Bonds and Power; Elements of Bond graphs:1-port elements : resistor R, Stiffness C, and	
Inertia I, Source of Effort Se and Flow SF; 2-port elements : Transformer TF and Gyrator GY,	
with modulation, Junction elements 1 and 0; Causality, Causality for basic 1-port and multi-	
ports. Derivation of System equations from Bond graphs in first order state space form.	
Bond Graph Modeling of Multi-energy Systems	12
Mechanical Systems, Translation and rotation (about a fixed axis), Electrical Systems,	
Electromechanical Systems, Fluid systems, Transducer models-cylinder, rack and pinion,	
electromechanical transducers, pumps – positive displacement and centrifugal pump, gear	

trains, etc.	
Analysis of Linear Systems	
Free & forced response for first and second order systems, Undamped& damped oscillator.	
Derivation of Signal flow graphs from Bond graphs. Derivation of Transfer functions.	
UNIT-II	
System Analysis	12
Bode plots. State Variable Analysis. State transition matrix, Characteristic equation, Eigen	
values and Eigen vectors, Their impact on system response. Similarity transformations and their	
properties. Controllability and Observability, Canonical forms, Controllable, Observable,	
Diagonal.	
Stability Criteria	12
Routh-Hurwitz criterion	
Controllers	1
Proportional Integral and Derivative feedback	
Simulation	
Computer simulation of Dynamic Systems using Bond graphs	

Subject Code	:	MEO-623
Title of the course	:	Power Plant Engineering

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

After successful completion of course, the students should be able to

- CO1: Understand the present scenario of energy production in India and understand the different working aspects of hydro power plant
- CO2: Explain the construction detail and the working of thermodynamic cycle of the thermal as well as gas power plant
- **CO3:** To understand the power production techniques of nuclear power plant and to apply the knowledge for power plant economics for different load situations
- Explore the knowledge in the field of non-conventional power generation methods and the direct energy CO4: conversion methods
- **CO5**: Understand the pollution effects of power generation and ways to control them for the betterment of society

Pre-requisite knowledge:

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation): COs Programme Outcomes (POs) Program Specific Outcomes (PSO) PO PO1 PO1 PO1 PSO PSO PO PO PO PO PO PO PO PO PSO 3 2 2

	1	2	3	4	5	6	7	8	9	0	1	2	1	2	
CO1	3	2	1	1	2	2	1	1	1	2	1	2	1	1	
CO2	3	3	1	2	3	2	2	1	2	1	2	2	1	1	
CO3	3	3	3	3	3	3	2	3	3	3	1	2	1	1	
CO4	3	3	2	3	3	2	3	2	3	1	2	1	2	2	
CO5	3	3	3	3	3	3	3	3	3	1	3	3	1	2	
Avera	3	2.8	2	2.4	2.8	2.4	2.2	2	2.4	1.6	1.8	2	1.2	1.4	
ge															

Theory

Course Description	Lecture(s)
Unit-I	
Introduction	03
Energy resources and their availability, Present power position and future planning in India &	
World, Types of power plants, selection of the plants, review of basic thermodynamic cycles used	
in power plants.	

HYDRO ELECTRIC POWER PLANTS	05
Rainfall and run-off measurements and plotting of various curves for estimating stream flow and	
size of reservoir, power plants design, construction and operation of different components of	
hydro-electric power plants, site selection, Advantages and comparison with other types of	
power plants.	
STEAM POWER PLANTS	08
Flow sheet and working of modern-thermal power plants, Classification of turbine, their working	
and governing, analysis of Re-heat cycle, Regenerative cycle, reheat –regenerative cycle and binary	
cycle Turbine problems, Condenser, Cooling ponds, cooling towers, Feed water treatment, site	
selection, coal storage, preparation, coal handling systems, feeding and burning of pulverized fuel,	
ash handling systems, dust collection mechanical dust collector and electrostatic precipitator.	
GAS AND STEAM TURBINE COMBINED CYCLES	08
Constant pressure gas turbine power plants, Arrangements of combined plants (steam & gas	1
turbine power plants), re-powering systems with gas production from coal, using PFBC	
systems with organic fluids, parameters affecting thermodynamic efficiency and performance	
of combined cycles.	
UNIT II	
NUCLEAR POWER PLANTS	07
Principles of nuclear energy, basic nuclear reactions, nuclear reactors-PWR, BWR, CANDU,	
Gas-cooled reactors, liquid -metal cooled reactors, organic moderated cooled reactors, fast breeder	
reactor, Location of Nuclear power plants, Advantages and limitations, nuclear power station,	
Shielding Materials, Effect of nuclear radiation, waste disposal.	
POWER PLANT ECONOMICS	06
Load curve, different terminology and definitions, cost of electrical energy, tariff methods of	
electrical energy, performance & operating characteristics of power plants-incremental rate	
theory, input-output curves, efficiency, heat rate, economic load sharing.	
NON-CONVENTIONAL POWER GENERATION	07
Solar radiation estimation, solar energy collectors, low, medium & high temperature power	
plants, OTEC, wind power plants, tidal power plants, geothermal power plants.	
DIRECT ENERGY CONVERSION SYSTEMS	02
Fuel cell, MHD power generation-principle, open & closed cycle systems, thermoelectric power	
generation, and thermionic power generation	
Pollution and its control	02
Introduction, Air and water pollution by thermal power plants, Radioactive pollution of environment	
by nuclear power plants, Noise pollution, Methods for reducing the pollution.	

1.Power Plant Engineering	P.K. Nag
2. Power Plant Engineering	P.C. Sharma
3. Power Plant Engineering	M. Wakil
4. Power Plant Engineering	ARORA.S.DOMKUNDWAR

Subjec	t Code		:	PHT-621
Title o	f the co	ourse	:	Physics of Materials-Theory
т	т	D	Credite	Weekky Lood

L Credits Weekly Load 3 0 4 4

Course Outcomes:

After successful completion of the course, the students should be able to

- CO1: Recognise common crystal structure and describe their symmetries.
- CO2: Understand motion of electron in crystalline solids under periodic potential and able to differentiate materials on basis of band theory.
- **CO3:** Describe nanomaterials based on their dimensionality.
- **CO4:** To analysis the dielectric and magnetic properties of materials.
- CO5: Understand the phenomenon of superconductivity and their properties in order to their applications.

CO/PO	Mappi	ng: (S	trong(3) / M	edium	(2) / V	Veak(1) indi	cates s	trength	of corr	elation):			
COs	Prog	-												Program Specific Outcomes (PSO)		
	РО	РО	PO	РО	PO	РО	РО	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	
CO1	3	3	2	3	2	1	2	1	1	3	1	3	3	1	3	
CO2	3	2	3	2	2	1	2	1	1	1	2	2	2	1	3	
CO3	2	3	3	3	2	1	1	1	1	2	3	2	2	2	2	
CO4	3	3	1	3	2	3	2	1	1	1	3	3	2	1	2	
CO5	3	2	2	3	3	3	2	1	1	2	3	3	2	1	1	
Avera ge	2.8	2.6	2.2	2.8	2.2	1.8	1.8	1	1	1.8	2.4	2.6	2.2	1.2	2.2	

UNIT-I

Elements of crystallography

A brief Introduction to material science Material structure, Space lattices, unit cell, primitive cell, Bravais lattice, Atomic packing factor, Miller indices, directions and planes in crystal lattice (cubic & hexagonal only), Distribution of atoms in lattice planes (in cubic crystal only), Important structures (NaCl, CsCl, diamond and ZnS), Structure determination: x-ray diffraction, neuron and electron diffraction.

Imperfections in crystals

Point imperfections, Frenkel and Schottky defects and their equilibrium concentration determination, Colourcentres, types of colourcentres, generation of colourcentres, Edge and screw dislocation, Berger vector, Surface and volume defects.

Band theory of solids

Free electron theory, Concepts of energy bands, Bloch theorem, electron in a periodic field of crystal (the Kronig-Penny Model) and its applications in metal, Distinction between metal, semiconductor and insulator, Effective mass of an electron, Hall effect.

Nano-materials

Fundamentals of nanomaterials and nanotechnology, Nano particles and Properties of nanomaterials, Synthesis, characterization & Applications of nanomaterials.

(5 Hrs)

(6 Hrs)

UNIT-II

Dielectric materials

Superconductivity

Introduction of dielectric materials, polarisation, Different types of polarization, electronic, ionic, orientational and space charge polarization, polarizability, Clausius-Mossotti relation, temperature and frequency dependence of polarizability, dielectric breakdown, measurement of dielectric properties, dielectric constant, dielectric loss, ferroelectric and piezoelectric materials examples of materials and their applications.

Magnetic Materials

Terminology and classification of magnetic materials, Types of magnetism (dia, para, ferro, ferri and antiferromagnetism), Theories of para, dia and ferromagnetic materials, Magnetic anisotropy and magnetostriction, magnetic domains, hard and soft magnetic materials, Ferrites and their applications.

Introduction, type I & type II superconductors, Meissner's effect and isotope effect, effects of magnetic field, London's equations and penetration depth, specific heat, BCS theory (electron-

(08 Hrs)

(5 Hrs)

(8 Hrs.)

(5 Hrs)

lattice-electron interaction, cooper pair, coherence length and energy gap), High temperature superconductors, Applications of superconductivity.

(8 Hrs)

45 Hrs.

Recommended Books	
Author	Title
Charles Kittel	Introduction to solid state Physics
MS Vijaya, G Rangarajan	Materials scienece
Raghvan	Materials science
Srinivasan and Srivastava	Materials science and Eng.
Callister JR	Materials science and Engg.: an introduction
Askeland and Phule	The science and engineering of material

Subject Code	:	PHP-621
Title of the course	:	Physics of Materials Lab

L	Т	Р	Credits	Weekly Load
0	0	2	1	2

After successful completion of the course, the students should be able to

- **CO1:** Differentiate between macro and microstructure in the materials.
- **CO2:** Specify the microstructure of an alloy from phase diagrams
- **CO3:** Understand type of charge carrier, mobility and carrier concentration and band gap of semiconductor.
- **CO4:** Understand thermal and mechanical properties of material.
- **CO5:** To analyze the electric, dielectric and magnetic properties and related phenomenon of materials

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Prog	Programme Outcomes (POs) Program Specific Outcomes (PSO)													
	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	3	3	2	1	2	1	1	3	1	3	3	1	3
CO2	3	3	3	2	2	1	2	1	1	1	2	2	2	1	3
CO3	3	3	3	3	2	1	3	1	3	2	3	2	2	2	2
CO4	3	3	3	3	2	3	3	1	3	1	3	2	2	1	2
CO5	3	2	3	3	3	3	3	1	3	2	3	3	2	1	1
Avera ge	3	2.8	3	2.8	2.2	1.8	2.6	1	2.2	1.8	2.4	2.4	2.2	1.2	2.2

List of Experiments

- 1. To prepare a metallic sample and measure the grain size using the metallurgical microscope.
- 2. To study the creep nature in metallic wires at room temperature.
- 3. To find the mobility and carrier concentration in a semiconductor sample using Hall Effect experiment.
- 4. To study the B-H curves of different materials.
- 5. To determine the Stefan's constant.
- 6. To determine the resistivity and energy band gap by four probe method
- 7. To find the Curie temperature of the given ferrite material.

- 8. To find the Curie temperature of the given ferroelectric material.
- 9. To calculate the dielectric constant of the given dielectric material.
- 10. To find the capacitance and permittivity of the given material.
- 11. To study the cooling curve and phase diagram of Pb-Sn alloy.

Subject Code : MET-621

Title of the course : CAD/CAM

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Enhance the knowledge of application of computers in designing.

- **CO2:** Know about the hardware.
- CO3: Designing and analysis ability in field of modeling the parts.
- CO4: Understand the knowledge related to the use of computers in manufacturing.
- CO5: Use CAD software to produce 2d and 3D designs.

Pre-requisite knowledge:

CO/PO	Mappi	ng: (S	trong(3) / M	edium	(2) / V	Veak(1) indi	cates s	trength	of corr	elation):		
COs	Prog	Programme Outcomes (POs) Program Specific													
		Outcomes (I											mes (P	SO)	
	РО	PO	РО	РО	PO	РО	РО	PO	РО	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	1	2	2	1	1	1	2	3	3	2	2	2	1
CO2	3	2	2	2	2	2	1	2	3	3	3	1	3	2	2
CO3	2	1	3	3	3	2	3	3	3	3	3	2	2	3	3
CO4	2	2	3	2	2	3	2	3	3	3	3	2	2	2	3
CO5	3	2	3	2	3	3	3	3	3	3	3	1	2	3	3
Avera	2.6	1.8	2.4	2.2	2.4	2.2	2	2.4	2.8	3	3	1.6	2.2	2.4	2.4
ge															

Course Description	
UNIT-I	Lectures
Fundamentals of CAD/CAM	
Introduction to CAD and CAM. Definition of CAD and CAM tools. Applications of	4
CAD/CAM. Design process and application of computers in design. Creating	
Manufacturing database. Benefits of CAD/CAM.	
CAD Hardware	
Input devices: Keyboard, Touch panel, Light pens, Graphic tablets, Joysticks, Trackball,	4
Mouse, Voice systems. Output devices: Storage, Tube graphics display, Raster refresh	
graphics display, Plasma panel displays, Liquid crystal displays. Central Processing Unit	
(CPU).	
CAD Software and Database Management	

UG Syllabus for Welding Technology

		4								
0		4								
-	erating									
ng and Communication.										
	1	7								
Analytical curves: parametric and non-parametric equations; Bezier Curves; Introduction to										
Sweep representation; CAD/CAW data	1									
neflection menning of accurate and	1.	5								
	eis,	5								
ce removal and shadilig.										
Classification of NC: Motion control	ontrol	5								
	ontrol	5								
, Combined CNC/DNC systems.										
mononta of NC machiness MCU driv	20	5								
		5								
	INC									
panets.										
nd codes: Tool length and radius comp	ansation	10								
		10								
somputer assisted part programming, p	0050									
oper cutting speed, feed in turning oper	ation.	4								
		48								
Author(s)	Publishe	r								
		Graw Hill								
		ey& Sons								
	PHI	<i>,</i>								
Automation, Production Systems and CIMGroover& ZimmerPHI										
Chang, Wysk and Wang	PHI									
Computer aided manufacturingChang, Wysk and WangPHINumerical Control and Computer AidedKundra, Rao, TiwariTata Mc Graw Hill										
Kundra, Kao, Tiwari	I ata IVIC	Graw Hill								
	CS, MCS, SCS. Software modules: Op ing and Communication. ametric equations; Bezier Curves; Intro- arfaces: plane, cylindrical, spherical, ru- erguson and Bilinear patch. Introduction Sweep representation; CAD/CAM data reflection, mapping of geometric mode ace removal and shading. Classification of NC: Motion control, c C, Combined CNC/DNC systems. mponents of NC machines: MCU, drive interpolation, guide-ways. Tooling for e pallets. Ind codes; Tool length and radius comp- natic components; Multiple axis NC ma Computer assisted part programming; p oper cutting speed, feed in turning oper Author(s) Zeid, Ibraham Mortenson Groover& Zimmer Chang, Wysk and Wang	ametric equations; Bezier Curves; Introduction to urfaces: plane, cylindrical, spherical, ruled, coons erguson and Bilinear patch. Introduction to solid Sweep representation; CAD/CAM data reflection, mapping of geometric models, ice removal and shading. Classification of NC: Motion control, control C, Combined CNC/DNC systems. mponents of NC machines: MCU, drives, interpolation, guide-ways. Tooling for NC e pallets. nd codes; Tool length and radius compensation; iatic components; Multiple axis NC machines; Computer assisted part programming; post oper cutting speed, feed in turning operation. Author(s) Publishe Zeid, Ibraham Tata Mc Mortenson John Wil Groover& Zimmer PHI Chang, Wysk and Wang PHI								

Scheme	

Subject Code	:	MEP-621
Title of the course	:	CAD/CAM Lab

L	Т	Р	Credits	Weekly Load
0	0	2	1	2

After successful completion of course, the students should be able to

- CO1: Enhance the knowledge of application of computers in designing.
- CO2: Know about the hardware.
- CO3: Designing and analysis ability in field of modeling the parts.
- CO4: Understand the knowledge related to the use of computers in manufacturing.
- CO5: Use CAD software to produce 2d and 3D designs.

Pre-requisite knowledge:

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

COs	Prog	ramme	e Outc	omes	(POs)								Progra	-	pecific		
														Outcomes (PSO)			
	РО	PO	PO	PO	PO	PO	PO	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO		
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3		
CO1	3	2	1	2	2	1	1	1	2	3	3	2	2	2	1		
CO2	3	2	2	2	2	2	1	2	3	3	3	1	3	2	2		
CO3	2	1	3	3	3	2	3	3	3	3	3	2	2	3	3		
CO4	2	2	3	2	2	3	2	3	3	3	3	2	2	2	3		
CO5	3	2	3	2	3	3	3	3	3	3	3	1	2	3	3		
Avera	2.6	1.8	2.4	2.2	2.4	2.2	2	2.4	2.8	3	3	1.6	2.2	2.4	2.4		
ge																	

List of Experiments

S. No.	Title
1.	Introduction to AutoCAD and drawing and drafting of a 2D component
2.	Draw orthographic projections of given 2D components using AutoCAD
3.	Draw orthographic projection from given isometric views of given 3D components using
	AutoCAD
4.	Draw given isometric projections using AutoCAD
5.	Introduction to CNC Star Lathe and Part Programming for a given component using Fanuc
	controller
6.	Part Programming for a given component for CNC lathe using Fanuc controller, simulation and
	machining the component.
7.	Introductions to CNC Star Mill and Part programming for a given prismatic component using
	Fanuc controller
8.	Part programming for a given prismatic component using Fanuc controller, Simulation and

UG Syllabus for Welding Technology 2

2016 Scheme

	machining the component.
9.	Make a program for transformations like scaling, rotation, translation etc. of
	Line/Rectangle/Triangle in C or MATLAB
10.	Make a program for drawing analytical or parametric curves like line, circle, parabola,
	hyperbola and Bezier.
11.	To make 3D model of the given component and generate its drawing using ProE/CATIA
12.	To make 3D model of given components and make assembly using ProE/CATIA

Subject Code	:	MET-623
Title of the course	:	Work Study and Ergonomics

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

After successful completion of course, the students should be able to

- CO1: Critical examination of existing engineering methods.
- CO2: Develop and improved method of any engineering operation/process/ system .
- CO3: Identify the standard time for an operation/ activity.
- **CO4:** Describe ergonomically designed engineering system.
- CO5: Able to design & development of products/systems with applications of Ergonomics

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Prog	Programme Outcomes (POs)											Program Specific		
													Outcomes (PSO)		
	РО	РО	РО	РО	PO	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	1	1	1	1	2	1	1	1	2	2	1	3	2	1	3
CO2	1	1	1	1	2	2	1	1	1	2	1	3	1	1	3
CO3	2	1	2	1	2	1	1	1	1	2	2	2	1	2	2
CO4	1	1	1	1	2	1	2	1	2	1	2	2	2	2	2
CO5	1	1	1	1	2	1	1	2	1	2	3	2	1	3	2
Avera	1.2	1	1.2	1	2	1.2	1.2	1.2	1.4	1.8	1.8	2.4	1.4	1.8	2.4
ge															

Course Description	Lecture(s)
Unit-I	
Productivity	
Introduction, Types of productivity, Measurement of productivity, Productivity Index,	04
Importance of productivity, Means of productivity improvement, Effect of productivity on	
society	
Method Study	
Introduction to Work Study: Time study and method study, Objectives of work study, Method	16
Study Procedure, factors for selection of Job for method study, Recording techniques: Charts,	
and Diagrams, Critical Examination, Principle of motion economy, Concept of Normal and	
maximum working area, Therbligs, Simo Chart, Micro motion study, Memo Motion Study,	
Cyclegraph and Chronocyclegraphs.	
Unit-II	

2016
Scheme

Time Study	
Introduction to various work measurement techniques, Stop watch Time study: definition,	16
equipments, Types of stop watches, stop watch time study procedure: Computation of number	
of cycles, types of work elements, guidelines for breaking the job into various work elements,	
Confidence levels and permissible error.	
Work sampling: definition, procedure, design of work sampling plans.	
PMTS: various methods, MTM-1, MTM-2, work factor	
Rating: Definition, Types of rating Techniques, Standard Performance, Normal Time, Observed	
Time and Standard Time, Uses of Standard Time, Allowances.	
Ergonomics	
Definition, Components of Ergonomics: Anthropology, Physiology, Psychology and Machines,	12
Design principles, Anthropometry: Definition, Structural Body Dimensions and Functional	
Body Dimensions, Seat Design, Design recommendations for seat design,	
Displays and controls: Types, design recommendations, design of control panels	
Environment: Light, ventilation, Vibration, Sound, House keeping	
Total=48	

Recommended Books:

- 1. NPC , A Manual of Method Study
- 2. ILO, Work Study
- 3. Dalela and Sharma, Work Study and Ergonomics, Standard
- 4. Barnes, Motion and Time Study, John Wiley

Subject Code	:	MEP-623
Title of the course	:	Work Study and Ergonomics Lab

L	Т	Р	Credits	Weekly Load
0	0	2	1	2

After successful completion of course, the students should be able to

- CO1: Critical examination of existing engineering methods.
- CO2: Develop and improved method of any engineering operation/process/ system .
- **CO3:** Identify the standard time for an operation/ activity.
- CO4: Describe ergonomically designed engineering system.
- CO5: Able to design & development of products/systems with applications of Ergonomics

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Prog	Programme Outcomes (POs)											Program Specific		
													Outcomes (PSO)		
	РО	PO	PO	РО	PO	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	1	1	1	1	2	1	1	1	2	2	1	3	2	1	3
CO2	1	1	1	1	2	2	1	1	1	2	1	3	1	1	3
CO3	2	1	2	1	2	1	1	1	1	2	2	2	1	2	2
CO4	1	1	1	1	2	1	2	1	2	1	2	2	2	2	2
CO5	1	1	1	1	2	1	1	2	1	2	3	2	1	3	2
Avera	1.2	1	1.2	1	2	1.2	1.2	1.2	1.4	1.8	1.8	2.4	1.4	1.8	2.4
ge															

List of Experiments

- 1. Study and Construct Operation Process Chart of Given Activity
- 2. Study and Construct Flow Process Chart (Man Type) of Given Activity.
- 3. Study and Construct Two Handed Operation Chart of Given Activity.
- 4. Study design features of an Ergonomic Chair
- 5. Construct Charts for Minimum and Maximum working areas and Therbligs
- 6. To obtain performance rating for given activity (Playing cards).
- 7. To obtain performance rating for given activity (walking).
- 8. To compute standard time on Dexterity Ring Apparatus
- 9. To Design and perform work sampling plan to compute percentage utilization of any facility
- 10 To Construct string diagram for the given layout problem.

Subject Code : **MET-624**

Title of the course **Mechanical Design - I** :

L	Т	Р	Credits	Weekly Load
3	1	0	4	4

Course Outcomes:

After successful completion of course, the students should be able to

- CO1: apply the theories of failure in design of machine elements.
- CO2: Application of theories of failure to thedesign a of various joints viz. riveted, welded, and screwed.
- **CO3:** Analyse the temporary and permanent joints and design joints based on applications.
- CO4: Apply the theories of static and dynamic failure theories to the design of Power screws, cotter joints, knuckle joints and shafts etc.
- **CO5:** Select appropriate rolling contact bearing, gasket and seal from the standard catalogue based on loads.

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Prog	Programme Outcomes (POs)											Program Specific		
													Outcomes (PSO)		
	РО	PO	PO	PO	PO	РО	РО	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	1	1	2	2	1	1	1	2	1	2	1	1	1
CO2	3	3	1	2	3	2	2	1	2	1	2	2	1	1	2
CO3	3	3	3	3	3	3	2	3	3	3	1	2	1	2	1
CO4	2	1	2	3	3	2	3	2	3	1	2	1	2	2	2
CO5	1	2	3	3	3	3	3	3	3	1	3	3	1	1	1
Avera	2.4	2.4	2	2.4	2.8	2.4	2.2	2	2.4	1.6	1.8	2	1.2	1.4	1.4
ge															

Theory

Course Description	Lecture(s)		
Unit-I			
Introduction			
Introduction to design procedure, design requirements, review of force analysis concepts,			
factor of safety concepts, concept and mitigation of stress concentration, motor selection			
and mechanical Properties. General design considerations like fatigue, creep, fabrication			
methods, economic considerations, material selection and ergonomics.			
Riveted and Welded Joints			
Type of riveted joints. Possible failure of riveted joints. Strength and efficiency of Butt			
(Single plate & double cover plate) and Lap riveted joints. Design of Boiler joints and	1		

	1
pressure vessels, Joint of Uniform strength.	
Common types of welded joints. Design for V-butt welded joints. Transverse fillet and	
parallel fillet welded joint. Axially and eccentrically loaded welded joint.	
Screwed Joints	
Introduction to term screw and various definitions of screw threads.	07
Advantages and Disadvantages of screwed joints. Form of screw threads. Bolts of Uniform	
strength. Bolted joint for eccentric loading.	
Common types of screw fastening; through bolt, tap bolt, stud, cap screw, machine screw	
and set screw. Designation of screw threads. Stresses in screw fastening. Design of bolts for	
cylindrical cover	
Power Screws	
Power to screw drive, efficiency of screw like square, trapezoidal threads, stresses in screw	06
and design procedure of screw Jack. Condition for self locking.	
Unit-II	•
Cotter Joint and Knuckle Joint	
Design of cotter. Design of Socket. Design of Spigot.	07
Design of knuckle joint; Design of rod. Design of Pin.	
Shafts	
Design for static and dynamic loading; stresses in shaft, design of shaft subjected to	10
bending moment or torsion moment and combined bending and torsion moments, shafts	
subjected to axial load in addition to combined bending and torsion moments	
failure theories; shafts subjected to fluctuating load conditions, cyclic loading, endurance	
limit, Soderberg Diagrams, fatigue strength and the S-N diagram,	
Design of shaft on the basis of rigidity.	
Bearings	
Classification of bearing; Design, Specification and selection of Journal bearing, rolling	07
contact bearing for given application.	
Total=48	

Recommended Books:

- 1. Shigley, J.E., and Mischke, C.R., "Mechanical Engineering Design (in S.I. Units)", 6th Ed., Tata McGraw-Hill, 2006.
- 2. Juvinall, R.C., and Marshek, K.M., "Fundamentals of Machine Component Design", 4th Ed., John Wiley & Sons, 2006.
- 3. Sharma & Aggarwal, "A Text book of Machine Design", Katson.
- 4. Machine Design-An Integrated Approach, Norton, Pearson Education.
- 5. Mahadevan, K., and B., Reddy, "Design Data Hand Book", CBS Publishers, 2003.
- 6. P. S. G, "Design data handbook", P. S. G., Coimbatore.

Subject Code : MET-625

Title of the course: Metal Cutting and Forming

	L	Т	Р	Credits	Weekly Load
ſ	2	0	0	2	2

Course Outcomes:

After successful completion of course, the students should be able to

understanding of basic concepts, chip formation mechanism, cutting forces and their impact CO1: on machining, optimization of machining operations.

awareness on different cutting tool materials, tool wear and wear mechanism of cutting **CO2:** tools, machinability and tool life principles.

CO3: Study the design considerations and development of lathe, drilling and milling dynamometers.

CO4: Understand the theory of plasticity and its application in metal forming operations to give insight to the students on theoretical and practical applications of metal forming operations.

CO5: to evaluate and analyze the stresses produced during rolling, wire drawing and strip drawing processes.

Pre-requisite knowledge:

	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):															
COs		Programme Outcomes (POs)												Program Specific Outcomes (PSO)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	2	3	3	2	1	1	2	2	2	2	2	2	1	
CO2	3	2	3	3	3	2	1	1	2	2	2	3	2	2	3	
CO3	3	2	2	2	3	2	2	1	2	3	2	2	2	1	3	
CO4	3	2	3	2	2	2	2	1	2	2	2	2	2	2	1	
CO5	3	3	3	3	2	2	1	1	2	3	2	2	3	1	1	
Average	3	2.4	2.6	2.6	2.6	2	1.4	1	2	2.4	2	2.2	2.2	1.6	1.8	

Theory

Course Description	Lecture(s)
Unit-I	
Metal Machining	04
Kinematics, Elements involved in metal cutting action, classifications of cutting tools, Single	
point tools, multi point tools, principle angles on a single point cutting tool, tool signature, ASA	
system, ORS system, NRS system, Interrelation ship between ASA, ORS & NRS Systems.	
Concept of oblique cutting and orthogonal cutting	
Chip Formation Mechanism	08
Mechanics of chip formation, types of chips, adverse effect of BUE formation, Chip reduction	
coefficient, cutting ratio, shear plane, shear strain, chip velocity & velocity of shear, Factors	
involved in chip formation analysis, effect of cutting variables on chip reduction coefficient, Chip	
formation in Milling & drilling	
Force System in Machining	08
Force system during turning, Merchant circle diagram for cutting force, Frictional force system at	
chip tool interface, Force system at interface, Effect of obliquity, nose radius & wear land on	
force system, Forces in drilling & milling. Fundamentals of dynamometry, lathe dynamometer,	

Z	U		b			
S	cł	16	'n	n	ρ	
-		-	-			

drilling & milling dynamometer.	
Thermal Aspect in Machining	03
Heat generation in metal cutting, tool wear & temperature, coolants & their applications.	
Tool Wear	03
Types of tool wear, Machine ability, Tool life analysis & tool life equation.	
Unit-II	
Metal Forming: Plastic Deformation & Yield Criterion	06
Plasticity, True stress, True strain, Elastic & plastic strain, Yield stress, Plastic incompressibility,	
Poisson's ratio for plastic deformation, Von Misses yield criterion, Tresca yield criterion,	
generalized strain hardening curve	
Rolling	04
Analysis of the processes, Roll separating force, Torque on the rolls, Effect of front & back	
Tension, Effect of support rolls	
Wire & Strip Drawing	06
Analysis of the processes	
Plain Strain Forging	06
Analysis of the processes, Deep drawing of circular blanks-analysis of process, Extrusion- analysis of process.	
T-4-1 40	1

Publisher

EWP

<u>Total = 48</u>

Recommended Books

Title			Author(s)	
3.6	<u> </u>	<i>a</i> .		

1. Manufacturing Science Malik & Ghosh

2. Production Engineering Science Pandey & Singh Standard Publishers

3. Metal cutting Theory A.Bhattacharya Central Book Publishers

Subject Code : MET-626

Title of the course	:	Welding Metallurgy
---------------------	---	--------------------

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Learn and understand about Iron-Carbon equilibrium diagram along with different phases as well as reactions found on this diagram.

CO2: Learn the concept of solidification of metals and alloys, epitaxial solidification. IDENTIFICATION OF Various zones of the weldment, weld zone, fusion boundary zone and HAZ

CO3: Calculate temperature at various locations

CO4: Develop welding procedures for different materials, UNDERSTAND about Welding of carbon steels, HSLA, Low alloy steels, Stainless steels and cast irons, Welding of dissimilar metals, Welding of plastics

CO5: Evaluate weldablity of different materials.

Pre-requisite knowledge:	Pre-ree	quisite	knowledge:	
---------------------------------	---------	---------	------------	--

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
Cos	Prog	Programme Outcomes (POs) Program Specific													
													Outco	mes (P	SO)
	РО	РО	РО	РО	PO	PO	РО	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	2	2	3	3	3	2	2	2	1	1	2	3	1	2	1
CO2	2	2	3	3	3	2	2	2	1	1	2	3	1	1	1
CO3	2	2	3	3	3	2	2	2	1	1	2	3	1	2	1
CO4	2	2	3	3	3	2	2	2	1	1	2	3	1	2	1
CO5	2	2	3	3	3	2	2	2	1	1	2	3	2	1	1
Avera	2	2	3	3	3	2	2	2	1	1	2	3	1.2	1.6	1
ge															

Course Description	Lecture(s)
Unit-I	
Introduction	
Introduction to Iron-Carbon equilibrium diagram, different phases, eutectic, eutectoid and	08
peritectic reactions, lever rule, Overview of CCT and TTT diagrams.	

Basic metallurgy of fusion welds	
Concept of solidification of metals and alloys, epitaxial solidification, Various zones of the	08
weldment, weld zone, fusion boundary zone and HAZ (and its types), properties of HAZ,	
Microstructures formed in weldments, gas metal and slag metal reactions.	
Heat flow in welding	
Temperature distribution in welding, Metallurgical effects of heat flow in welding	04
Preheat and postweld heat treatment	
Aims and methods of preheating and postweld heating, Preheating and PWHT of some specific	04
steels	
Unit-II	•
Weldability of commonly used Engineering Materials	10
Welding of carbon steels, HSLA, Low alloy steels, Stainless steels and cast irons, Welding of	
dissimilar metals, Welding of plastics.	
Weld cracking	
Introduction and classification of weld cracks, factors affecting weld cracking, specific weld	04
cracks	
Weldability and weldability tests	
Introduction, Weldability assessment, Weldability tests, Fabrication weldability tests and basic	10
service weldability tests	
Total=48	

Recommended Books:

- 1. Welding Metallurgy by Sindo Kou (Wileyinterscience)
- 2. Metallurgy of Welding J. F. Lancaster Allen & Unvin
- 3. The Metallurgy of Welding D. Seferian Chapman and Hall
- 4. Welding Engineering and technology by R.S. Parmar (Khanna Publications)
- 5. Welding Metallurgy (Volume-1) by George E.Linnert (AWS)
- 6. Modern Arc Welding Technology by S.V. Nadkarni (Oxford & IBH)

Subject Code : **MEP-626**

Title of the course Welding Metallurgy Lab :

L	Т	Р	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Learn and understand about Iron-Carbon equilibrium diagram along with different phases as well as reactions found on this diagram.

CO2: Learn the concept of solidification of metals and alloys, epitaxial solidification. IDENTIFICATION OF Various zones of the weldment, weld zone, fusion boundary zone and HAZ

CO3: Calculate temperature at various locations

CO4: Develop welding procedures for different materials, UNDERSTAND about Welding of carbon steels, HSLA, Low alloy steels, Stainless steels and cast irons, Welding of dissimilar metals, Welding of plastics

CO5: Evaluate weldablity of different materials.

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Prog	Programme Outcomes (POs) Program											am Sp	pecific	
													Outco	mes (P	SO)
	РО	PO	PO	PO	PO	PO	PO	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	2	2	3	3	3	2	2	2	1	1	2	3	1	2	1
CO2	2	2	3	3	3	2	2	2	1	1	2	3	1	1	1
CO3	2	2	3	3	3	2	2	2	1	1	2	3	1	2	1
CO4	2	2	3	3	3	2	2	2	1	1	2	3	1	2	1
CO5	2	2	3	3	3	2	2	2	1	1	2	3	2	1	1
Avera	2	2	3	3	3	2	2	2	1	1	2	3	1.2	1.6	1
ge															

List of experiments

- 1. To study different zones of a weldment
- 2. To study various microstructural aspects of welded joints
- 3. To determine temperature distribution in welding
- 4. Concept of preheating and post heating in welding
- 5. Ferrite studies in welding of stainless steel
- 6. Study of weldability aspects of dissimilar welding

- 8. Weldability assessment of weldments
- 9. Study of various fabrication weldability tests

Subject Code	:	MEO-711
Title of the course	:	Properties and selection of engineering materials

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

After successful completion of course, the students should be able to

- **CO1:** The students will be able to display a critical awareness of the relevance of key areas, e.gmetals,alloys,properties of metals and defects in metals.
- **CO2:** The students will be able to interpret mechanical properties, diffusion mechanism, dislocations and solidification of metals.
- **CO3:** The students will also be able to interpret the applications of different materials used in modern industry and engineering.
- **CO4:** The students will be able to understand composite material, polymers and smart materials and its applications.

Pre-requisite knowledge:

CO/PO	Mapp	Mapping : (Strong(S) / Medium(M) / Weak(W) indicates strength of									gth of	Progra	Program Specific		
correlati	ion):									Outco	Outcomes (PSO)				
COs	Prog	ramme	e Outc	omes	(POs)								PSO	PSO	PSO
													1	2	3
	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	2	2	1
	1	1 2 3 4 5 6 7 8 9 0 1 2									2				
CO1	3	1	1	1	1	2	1	2	2	2	2	1	3	2	2
CO2	3	1	1	1	1	2	1	2	2	2	3	1	2	3	3
CO3	3	2	1	2	1	2	1	2	3	2	2	2	2	2	3
CO4	3	3 2 1 2 1 2 1 2 2 2 2										2	2	3	3
Avera	3	1.5	1	1.5	1	2	1	2	2.2	2	2.25	1.5	2.2	2.4	2.4
ge									5						

Unit	Course description	Lectures
	Unit 1	
1.	Introduction: Introduction to engineering materials, Industrial importance of common engineering materials-metals, non-metals and alloys, their properties (physical and mechanical) and applications.	4
2.	Metallic materials-Engineering Ferrous materials, Aluminium, Copper, Nickel, Magnesium, Titanium alloys. Phase diagrams, properties and typical alloys with reference to their applications.	8

3.	Interpretation of tensile stress-strain curves, Diffusion mechanisms and steady state and non-steady state diffusion, Dislocations and strengthening mechanisms, Nucleation of metals, Recrystallization and growth.	10
4.	Unit 2 Composite materials-Fiber reinforced, laminated and dispersed materials with metallic matrix of aluminium, copper and Titanium alloys and with non- metallic matrix of unsaturated polyesters and epoxy resins. Development, Important properties and applications of these materials.	7
5.	Smart materials-Shape Memory Alloys, Intelligent materials for bio-medical applications, Polymers and Plastics from industry. Development, important properties and applications of these materials. Construction material:concrete materials, properties of concrete, reinforced and prestressedconcrete, asphalt, the structure of wood, moisture content and density of wood, mechanical properties of wood.	8
6.	Case study of the failure of components due to wrong selection of materials- Study and analysis of appropriate material for some specific application like aerospace, boiler tubes, turbine blades, automobiles and infrastructures (building and bridges). Economic environmental and social issues of material usage- environmental and societal considerations, recycling issues and life cycle analysis.	9

Recommended Books:

- 1. Materials and metallurgy by OP Khanna, Published by Dhanpat Rai.
- 2. Heat treatment principles and techniques by Rajan and Sharma, Published by PHI.
- 3. Introduction to physical metallurgy by Sidney H Avner, Published by TMH.
- 4. Materials Science & Engineering by William D. Callister, , Wiley India
- 5. The science and engineering of materials by Donald R. Askeland and pradeepP.Phule.

2010	5
Sche	me

Subject Code	:	MEO-712
Title of the course	:	Robotics

ſ	L	Т	Р	Credits	Weekly Load
	3	0	0	3	3

After successful completion of course, the students should be able to

- **CO1:** Develop the ability to analyze and design the motion for articulated systems.
- CO2: Acquire the knowledge on advanced algebraic tools for the description of motion.
- CO3: Understand the basic concepts of industrial robotics, namely in terms of classification, kinematics, sensors, and typical applications

CO4:Describe current status of robotics technology and new development

CO5: Understand the context and importance of robotics in the different society sectors.

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Programme Outcomes (POs)								Program Specific						
											Outcomes (PSO)				
	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	2	1	2	1	1	2	2	3	1	2	1	1	2
CO2	3	2	2	1	1	1	2	3	2	3	1	1	1	2	3
CO3	3	3	2	1	1	1	1	3	3	3	2	2	1	1	3
CO4	3	2	2	1	1	1	2	2	2	3	2	1	1	2	2
CO5	3	1	2	1	1	1	2	3	2	3	1	1	1	2	3
Avera	3	2	2	1	1.2	1	1.6	2.6	2.2	3	1.4	1.4	1	1.6	2.6
ge															

Course Description	Lecture(s)
Unit-I	-
Introduction	05
Evolution of robot and robotics, laws of robotics, robot anatomy: Links, joints, Degrees of	
freedom (DOF), Precision movement, robot specifications and work volume, Types of	
Robot drives-Basic robot motions, Arm configuration, wrist configuration.	
End Effectors	07
End effectors classification-Mechanical, magnetic, vacuum and adhesive gripper, Robot	
control-unit control system concept-servo and non servo control of robot joints, adaptive	
and optimal control.	

2016
Scheme

Sensors	08
Sensor devices Types of sensors- contact, position and displacement sensors, Force and	
torque sensors-proximity and range sensors-acoustic sensors- Robot vision systems,	
sensing and digitizing- Image processing and analysis.	
Unit-II	<u>.</u>
Coordinate Frame, Mapping and Transforms	05
Coordinate frames, description of objects in space, transformation of vectors, fundamental	
rotation matrices.	
Kinematics	09
Denavit- Hartenberg Notation, kinematic relationship between adjacent links, Manipulator	
transformation matrix, Inverse kinematics, Concept of manipulator jacobian.	
Robot Programming	08
Robot language classification-programing methods off and on line programming, Lead	
through method, Teach pendent method, Language, simple program.	
Industrial Applications	06
Application of robots- Material handling- machine loading and unloading, Assembly,	
Inspection, Welding, spray painting, Recent developments ion robots-safety considerations.	

Subject Code	: MEO-713
Title of the course	: Non conventional energy resources

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

COURSE OUTCOMES:

After successful completion of course, the students should be able to

- **CO1:** Understand the operation of various non conventional energy resources.
- **CO2:** Analyze the various non conventional energy resources.
- **CO3:** Familiarize the components of non conventional energy resources.
- **CO4:** Design of solar energy system and wind energy system.
- **CO5:** Identify the application of various non conventional energy resources.

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Programme Outcomes (POs)										Program Specific Outcomes (PSO)				
	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	1	1	2	2	1	1	1	2	1	2	1	1	2
CO2	3	3	1	2	3	2	2	1	2	1	2	2	1	1	2
CO3	3	3	3	3	3	3	2	3	3	3	1	2	1	1	1
CO4	3	3	2	3	3	2	3	2	3	1	2	1	2	2	1
CO5	3	3	3	3	3	3	3	3	3	1	3	3	1	2	1
Avera	3	2.8	2	2.4	2.8	2.4	2.2	2	2.4	1.6	1.8	2	1.2	1.4	1.4
ge															

Theory

Course Description	Lecture(s)
Unit-I	
Introduction	
Renewable and non-renewable energy sources, their availability and growth in India: energy consumption as a measure of Nations Development: strategy for meeting the future energy requirements.	(12 Hrs)
Solar Energy	
Solar radiations-beam and diffusion radiations; earth sun angles, attenuation and measurement of solar radiation; Optical properties of materials and selective surfaces.	
Solar Energy Equipments	•
Principles, introduction of different types of collectors, flat plate, cylindrical, and parabolic collectors; Solar energy storage system-their types, characteristics and capacity; solar ponds. Application of solar energy in water, space and process	(12 Hrs)

UG Syllabus for Welding Technology

heating, solar refrigerant and air conditioning; water desalination and water	
pumping; Solar thermal power generation; solar cells and batteries.	
Wind Energy	
Principle of wind energy conservation; basic components of wind energy	
conversion systems; wind mill components, various types and their construction	
features; wind data and site selection considerations.	
Unit-II	
Direct Energy Conversion Systems	
i)Magnetic Thermodynamic(MHD) Generators; Operating principle, types and working of different MHD system-their relative merits; MHD materials and production of magnetic fields. ii) Thermo-Electric Generators; Thermo-electric effects and materials; thermoelectric devices and types of thermo-electric generators; thermo-electric refrigeration. iii) Thermionic Generators; Thermionic emission and materials; working principle of thermionic convertors. iv) Fuel Cell; Thermodynamic aspect; types, components and working of fuel cell. Performance, applications and economic aspects of above mentioned direct energy conversion systems.	(12Hrs)
Miscellaneous Non-Conventional Energy System	
i)Bio-Mass; Concept of bio-mass conversion, photo-synthesis and bio-gasification; bio gas generators and plants, their types constructional features and functioning; fuel properties of bio gas and community bio gas plants ii) Geothermal; Sources of geothermal energy types, constructional features and associated prime movers iii) Tidal and wave energy plants; single basin and double basin tidal power plants; conversion devices, Advantages/disadvantages and applications of above mentioned energy system.	(12 Hrs)

Recommended Books;

Title	Author(s)	Publisher
Solar Energy: Fundamental And Application.	Jai Prakash, H.P. Garg	Tata McGraw-Hill.
Solar energy: Principles of Thermal collection & storage.	S.P. Sukhatme	Tata McGraw-Hill
Solar Engineering of Thermal Process.	Duffie Beckman	John WilleyDuffie
Energy conversion.	Chang	Publishers prentice Hall.

Title of the course : Er

: Environmental Studies

Subject Code : CHM-711

L	Т	P	Credits	Weekly Load
3	0	0	3	3

Course Outcomes: At the end of the course, the student will be able to:

CO1	Create an awareness about environmental problems among students
CO2	Impart basic knowledge about the environment and its allied problems.
CO3	Develop an attitude of concern for the environment.
CO4	Motivate public through students to participate in environment protection and environment improvement.
CO5	Acquiring skills to help the concerned individuals in identifying and solving environmental problems.

CO/PO Mappir	ng: (Stro	ong(3)	/ Med	ium(2)	/ Wea	ak(1) ir	ndicate	s strer	ngth of	corre	ation)	:			
		Programme Outcomes (POs)													ecific
															PSO)
COs		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	PO1	2	3	4	5	6	7	8	9	10	11	12			
CO1	1	2	1	1	1	1	1	2	3	3	2	2	1	2	2
CO2	1	1	1	2	2	1	2	1	1	2	2	2	1	2	2
CO3	1	2	2	1	2	2	2	1	2	3	3	3	2	1	1
CO4	2	1	2	1	2	1	1	1	2	2	3	3	1	2	2
CO5	1	1	2	1	2	1	2	1	3	3	3	2	2	3	1
Average	1.2	1.4	1.6	1.2	1.8	1.2	1.6	1.2	2.2	2.6	2.6	2.4	1.4	2	1.6

Theory

Unit	Main Topics	Course outlines	Lecture(s)
Unit-1	Ecology and environment	Ecosystem; components, functioning, food chain and web, ecological pyramids. Biogeochemical cycles; water cycle, carbon cycle, nitrogen cycle. Biodiversity and its conservation.	08
	Sustainable development	Sustainable development; conflict between development and environmental conservation, international endeavors. Sustainable utilization of resources; energy resources, water resources, forest resources.	08
Unit-2	Environmental pollution	Water pollution; wastewater characterization, primary treatment, secondary biological treatment, general discharge standards. Air pollution; major pollutants, treatment devices, ambient standards. Solid waste management.	10
	Environmental Regulations	Green House Effect and Kyoto Protocol. Ozone layer depletion and Montreal Protocol. Environment Protection Act. Hazardous waste management.	06

Total=32

Recommended Books:

- 1. E. Bharucha, Textbook for Environmental Studies; UGC Publication.
- 2. K.D. Wanger, Environmental Management; W.B. Saunders Publication.
- 3. E.P. Odum, Fundamentals of Ecology; W.B. Saunders Publication..
- 4. Pollution Control Acts, Rules and Notifications; CPCB Publication.

2016 Scheme

HUT 71	1/722		PRINC	IPLES	OF MA	NAGE	MENT			L T -3 1	P 0	C 3.5
CO 2: U CO 3: A CO 4: A CO 5: U	ccessfu indersta indersta nalyze nalyze ommun indersta	I comp nd the ment th nd and the dif the van ication	conception toughts. I apply to Terent of rious months and co	ts of ma he plant rganizat stivation ntrollin	nageme ning con tional str nal and l g proces	nt, admi icepts. ructures eadershi ses.	nistratio and und ip theori	on and th lerstand ies and u	the staff	ing proc	ess.	
Pre-required 1. Nil	uisite:			4								
CO/PO I	Mappin	g										
(S/M/W		1000	E-16-334			Strong,	M-Media	um, W-\	Weak			
COs	Prog PO1	PO	PO3	Real COurselbe	198	Ince	Ince	Inco	Tarres	Lawrence		
	TOT	2	105	PO4	PO5	PO6	PO7	PO8	PO9 .	PO10	PO11	PO12
CO :1							-				M	-
CO.:2									12		S	-
CO :3											S	-
CO ;4					12100				S	S		
CO :5									-		S	1
Course .	Assesso	nent n Dire										
	Minor	-1				Cour	se and	In Survey	direct			-
	Minor Quiz-1 End se	.Quiz-	11 4.As	signme	nt 5			,				
		2	_l~	e	-(7-4	2	2	- 1	B	ki	- 06

UNIT-I

MANAGEMENT CONCEPTS

Management – Definition – Importance – Functions – Skills required for managers - Roles andfunctions of managers – Science and Art of Management –Management and Administration.Evolution of Classical, Behavioral and Contemporary management thoughts.

PLANNING

Nature & Purpose – Steps involved in Planning – Forms of Planning – Types of plans – Plans at Individual, Department and Organization level - Managing by Objectives. Forecasting – Purpose

- Steps and techniques. Decision-making - Steps in decision making.

UNIT-II

ORGANISING

Nature and Purpose of Organizing - Types of Business Organization - Formal and informal organization - Organization Chart - Structure and Process - Strategies of Departmentation-Line and Staff authority -Benefits and Limitations. Centralization Vs De-Centralization and Delegation of Authority. Staffing - Manpower Planning - Recruitment - Selection - Placement

- Induction.

UNIT-111

DIRECTING & CONTROLLING

Nature & Purpose – Manager Vs. Leader - Motivation - Theories and Techniques of Motivation.Leadership – Styles and theories of Leadership.Communication – Process – Types – Barriers – Improving effectiveness in Communication. Controlling – Nature – Significance – Tools and Techniques.

UNIT-IV

CONTEMPORARY ISSUES IN MANAGEMENT

Corporate Governance Social responsibilities – Ethics in business – Recent issues. American approach to Management, Japanese approach to Management, Chinese approach to Management and Indian approach to Management.

REFERENCES:

1. Tripathy PC And Reddy PN, "Principles of Management", Tata McGraw-Hill, 4th Edition, 2008.

2. Dinkar Pagare, "Principles of Management", Sultan Chand & Sons, 2000.

3. Kanagasapapathi. P "Indian Models of Economy, Business and Management", Prentice Hall of India, New Delhi, ISBN: 978-81-203-3423-6, 2008.

4. Vijayaraghavan, G.K.and Sivakumar, M. "Principles of Management", Lakshmi Publications, 5th Edition, 2009.

5. Harold Koontz & Heinz Weihrich, "Essentials of Management - An International perspective", 8th edition. Tata McGraw-Hill, 2009.

6. Charles W.L. Hill and Steven L McShane – Principles of Management, Tata Mc Graw-Hill, 2009.

9 Hrs

9 Hrs

12 Hrs

10 Hrs

10 Hrs

Subject Code : **MET-711** Title of the course : Metrology & Mechanical Measurements

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

- CO1: KnowImportance of use of standard measurement practices in system analysis and quality control in a legal and ethical way.
- CO2: Understanding of basic principle of sensing in measurement of physical quantities and automation of instruments.
- CO3: Understanding of basics of micron and submicron level measurements by mechanical and optical methods and latest development in such measurements.
- CO4: Use and develop sustainable measurement systems for shop floor.
- CO5: Handle various measuring instruments

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Prog	ramme	e Outc	omes	(POs)								Progra	am Sp	pecific
					Outcomes (PSO)										
	РО	РО	PO	РО	PO	PO	РО	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	3	3	3	1	1	1	2	1	1	1	2	2	1
CO2	3	3	3	3	3	1	1	1	2	2	1	1	1	2	1
CO3	3	3	3	3	3	1	2	1	2	1	1	1	1	2	2
CO4	3	3	3	3	3	1	1	1	2	1	2	1	2	1	2
Avera	3	3	3	3	3	1	1.2	1	2	1.25	1.25	1	1.5	1.75	1.5
ge							5								

Theory

Course Description	Lecture(s)
Unit-I	
Introduction	
Measurement, definition, aim, method of measurement, measurements in design, factor in	07
selection of measuring instruments, measurements systems, time element in measurement, error	
in measuring instruments, temperature problem, static & dynamic characteristics of measuring	
instruments, calibration, error, classification, system error analysis, theoretical relationships.	
Standard of Measurements	
Introduction, legal status, present measurement system & its advantage over previous system,	05
standard of length, mass, time, temp. etc.	
Displacement & Dimensional Measurement	

2016
Scheme

Problems of dimensional measurement, gage block, surface plate, temp problem etc., use of	07
different type of comparators, optical method, optical flats, application of monochromatic light	
& optical flats, use of optical flats & monochromatic light for dimensional comparison,	
interferometer.	
Surface Testing & Measurement	
Surface roughness, definition, various methods to measure surface roughness, different	05
instruments for measuring surface roughness, roughness standard.	
Unit-II	
Speed Measurement	
Introduction, use of counters, stroboscope, direct application of frequency standard by	06
comparative methods, calibration of frequency sources, tachometers, different types-	
mechanical, electrical, frequency tachometer.	
Stress Strain Measurements & Strain Graphs	
Introduction, mechanical strain gauges, optical strain gauges, electrical strain gauges, stress	06
measurement by variable resistance strain gauge, sensing element materials, forms of strain	
gauge sensing elements, strain gauge adhesive, protective coating, strain gauge mounting	
techniques.	
Measurement of Force & Torque	
Introduction, measuring methods, elastic transducers, strain gauge, load cell, piezo type load	06
cell, hydraulic & pneumatic system, torque measurement, dynamometer, classification, type &	
characteristics.	
Screw Thread Measurements	
Errors in threads, screw thread gauges, measurement of elements of the external & internal	03
threads using caliper gauges, various other methods to measure screw thread parameters	
Spur Gear Measurement	
Geometry of spur gear, measurement of spur gear parameters, run out, pitch, profile, lead,	03
backlash, tooth thickness, composite elements, various other methods to measure spur gear	
parameters.	
Total=48	

Recommended Books:

- 1. Nakra& Chaudhary, Instrumentation, Measurement & Analysis; Tata McGraw Hill
- 2. E. O. Doebelin, Measurement Systems, Application & Design; Tata McGraw Hill
- 3. J.W. Dally, R.F. William and Mc Connell, Instrumentation for Engg. Measurement; John Wiley and Sons
- 4. K.J. Aume, Metrology & Interchangeability; McDonald and Company Ltd.
- 5. T. G. Beckwith, L.N. Buck and R. D. Marangoi, Mechanical Measurements; Addison Wesley Reading

Subject Code	:	MEP-711
Title of the course	:	Metrology & Mechanical Measurements Lab

L	Т	Р	Credits	Weekly Load
0	0	2	1	2

After successful completion of course, the students should be able to

- **CO1:** Know Importance of use of standard measurement practices in system analysis and quality control in a legal and ethical way.
- **CO2:** Understanding of basic principle of sensing in measurement of physical quantities and automation of instruments.
- **CO3:** Understanding of basics of micron and submicron level measurements by mechanical and optical methods and latest development in such measurements.
- **CO4:** Use and develop sustainable measurement systems for shop floor.
- CO5: Handle various measuring instruments

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Prog	Programme Outcomes (POs) Program Specific													
					Outco	mes (P	SO)								
	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	3	3	3	1	1	1	2	1	1	1	2	2	1
CO2	3	3	3	3	3	1	1	1	2	2	1	1	1	2	1
CO3	3	3	3	3	3	1	2	1	2	1	1	1	1	2	2
CO4	3	3	3	3	3	1	1	1	2	1	2	1	2	1	2
Avera	3	3	3	3	3	1	1.2	1	2	1.25	1.25	1	1.5	1.75	1.5
ge							5								

List of Experiments

- 1. Linear measurement of the test samples by
 - a) Vernier caliper, b) Micrometer, c) Vernier depth gauge and d) height gauge
- 2. Study and measurements using telescopic gauge and bore gauge
- 3. Study and measurement using dial test indicator
- 4. Study and measurements using profile projector
- 5. Study and measurements using tool room microscope
- 6. Angle measurement of test sample using sine bar
- 7. Study and measurement using electronic comparator
- 8. Speed measurement of shaft by stroboscope and tachometer
- 9. Measurement of surface roughness by SURFCODER

- 10. Calibration of dial gauge by dial calibration tester
- 11. Calibrate of pressure gauges with dead weight calibrator
- 12. Calibration of verniercaliper and micrometer

Subject Code	:	MET-715
Title of the course	:	Welding codes and standards

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

After successful completion of course, the students should be able to

CO1: Generate ethical values by knowing about welding codes and standards

CO2: Prepare WPS and PQR for Industrial welding applications

CO3: Acquire knowledge about industrial materials, welding consumables and their applications

CO4: Prepare WPS for pipeline for petroleum applications

CO5: Understand basic testing methods for weld qualification.

Pre-requisite knowledge:

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

COs	Prog	Programme Outcomes (POs)											Program Specific		
													Outcomes (PSO)		
	PO PO1 PO1 PO											PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	1	2	2	1	1	1	2	3	3	2	2	2	1
CO2	3	2	2	2	2	2	1	2	3	3	3	1	3	2	2
CO3	2	1	3	3	3	2	3	3	3	3	3	2	2	3	3
CO4	2	2	3	2	2	3	2	3	3	3	3	2	2	2	3
CO5	3	2	3	2	3	3	3	3	3	3	3	1	2	3	3
Avera	2.6	1.8	2.4	2.2	2.4	2.2	2	2.4	2.8	3	3	1.6	2.2	2.4	2.4
ge															

Course Description	Lecture(s)
Unit -1	
Weld Joints and welding symbols	
Types of weld joints, Types of welds, Essential elements of a basic welding symbol,	08
Primary and secondary weld symbols, various information and location of this information	
on welding symbol.	
Base materials and consumables	
Introduction to ASME section II part A and C; introduction to base materials and	08
consumables standards, consumables testing and qualification as per ASME/AWS	
requirements.	
Pressure vessel fabrication	
Introduction to ASME section VIII- division I, fabrication methods, joint categories,	08
welding and inspection requirements, post weld heat treatment and hydro-testing.	
Unit-II	
Welding procedure specifications (WPS)	

Introduction to ASME section IX; introduction to Welding Procedure Specification (WPS)- essential, non-essential and supplementary essential variables, procedure qualification,	08
Procedure Qualification Records (PQR); welders performance qualification, welder and	
welding operator	
Indian Boiler Regulations (IBR)	
Introduction to IBR-1950, workmanship for fabrication of shell type welded boilers,	08
qualification and requalification of welders to be engaged for welding of boilers.	
Cross Country Pipe line Welding	
Introduction to API 5L welding code, Process and product standards for manufacturing of	08
pipes, welding procedure and welder qualification, field welding and inspection	
requirements.	

Total: 48

Books Recommended:

- 1. Indian Boiler Regulations-1950
- 2. API 5L
- 3. ASME Section VIII Division 1
- 4. ASME Section IX
- 5. ASME Section II Part A and Part C

Subject Code	:	MET-716
Title of the course	:	Inspection and Testing of Weldments

L	Т	Р	Credits	Weekly Load			
3	0	0	3	3			

After successful completion of course, the students should be able to

- CO1: Identifying various weld defects and understand the nature of occurrence of these defects along with their remedial measures.
- CO2: Understand the meaning of welding inspection, responsibilities in welding inspection, role and certification of welding inspectors.
- **CO3:** Develop a WPS for particular application
- **CO4:** Learn about various destructive and non-destructive techniques used in welding.
- **CO5:** Apply about Statistical Quality Control Techniques for testing of welds.

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Programme Outcomes (POs)												Progra Outco	am Spomes (P	pecific SO)
	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	1	1	2	2	1	1	1	2	1	2	1	1	1
CO2	3	3	1	2	3	2	2	1	2	1	2	2	1	1	2
CO3	3	3	3	3	3	3	2	3	3	3	1	2	1	2	1
CO4	3	3	2	3	3	2	3	2	3	1	2	1	2	2	2
CO5	3	3	3	3	3	3	3	3	3	1	3	3	1	1	1
Avera ge	3	3	2	2.4	2.8	2.4	2.2	2	2.4	1.6	1.8	2	1.2	1.4	1.4

Theory

Course Description	Lecture(s)		
Unit-I			
Weld Discontinuities and Quality Assurance:	12		
Definition of discontinuity, imperfection and defects, classification of various welding			
defects, causes and remedies.			
Concept of quality assurance in welding, weld quality-meaning, organization,			
requirement, procedure and program for quality assurance.			
Welding Inspection and Welding Procedure Specification (WPS):			
Meaning of welding inspection, responsibilities in welding inspection, role and			

Total=48

certification of welding inspectors.	
Description and important details of WPS; Essential, non-essential and supplementary	
variables, various steps in procedure qualification, PQR (procedure qualification	
record).	
	04
Qualification of Welders and Welding Operators:	04
Welding performance qualification-requirement, qualification and re-qualification of	
welders, Qualification record, Essential and non-essential variables in performance	
qualification.	
UNIT-II	
Destructive Testing of Welds:	12
Classification and description of destructive testing techniques like Tensile test, Bend	
test, Impact test, Hardness test, Fatigue test; Testing of welding consumables-All weld	
test, Determination of diffusible hydrogen, Deposition efficiency, Coating moisture	
determination.	
Non Destructive Testing:	08
Visual inspection, dye-penetrate inspection, magnetic particle inspection, ultrasonic	
testing, radiographic testing, eddy current testing.	
Statistical Quality Control Techniques applied to Weld Testing:	04
Basic concept about application of control charts and acceptance sampling for testing	
and inspection of welds	

Recommended Books

Title	Author(s)	Publisher
Welding Engineering & Technology	R. S. Parmar	Khanna Publications
Modern Arc Welding Technology	S. V. Nadkarni	Oxford & IBH.
AWS Welding Handbook, Volume-1	Leonard. P. Connor	AWS
Statistical Quality Control	Juran	McGraw Hill.
Quality Control	Mahajan	Dhanpat Rai & Sons
Method of Testing Fusion Welded Joints	IS-3600 (Part-I & II)	BIS, New Delhi
and Weld Metals in Steel		
ASME Boiler and Pressure Vessel Code		ASME
Section IX.		
Welding Technology	O P Khanna	Dhanpat Rai

Subject Code	:	MEP-716
Title of the course	:	Inspection and Testing of Weldments Lab

L	Т	Р	Credits	Weekly Load
0	0	2	1	2

After successful completion of course, the students should be able to

- CO1: Identifying various weld defects and understand the nature of occurrence of these defects along with their remedial measures.
- CO2: Understand the meaning of welding inspection, responsibilities in welding inspection, role and certification of welding inspectors.
- **CO3:** Develop a WPS for particular application
- **CO4:** Learn about various destructive and non-destructive techniques used in welding.
- **CO5:** Apply about Statistical Quality Control Techniques for testing of welds.

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Prog	Programme Outcomes (POs) Program Outcomes (-	pecific	
													Outco	mes (P	50)
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	1	1	2	2	1	1	1	2	1	2	1	1	1
CO2	3	3	1	2	3	2	2	1	2	1	2	2	1	1	2
CO3	3	3	3	3	3	3	2	3	3	3	1	2	1	2	1
CO4	3	3	2	3	3	2	3	2	3	1	2	1	2	2	2
CO5	3	3	3	3	3	3	3	3	3	1	3	3	1	1	1
Avera	3	3	2	2.4	2.8	2.4	2.2	2	2.4	1.6	1.8	2	1.2	1.4	1.4
ge															

List of experiments:

- 1. Introduction to destructive testing facilities in the lab.
- 2. Introduction to non-destructive testing facilities in the lab.
- 3. Demonstration for the working of muffle furnace.
- 4. Study and demonstration of tensile test.
- 5. Study and demonstration of compressive test.
- 6. Study and demonstration of impact strength (Charpy V-notch) test.
- 7. Study and demonstration of impact strength (Izod) test.
- 8. Study and demonstration of U-bend test.
- 9. To perform visual inspection of a given weld specimen.
- 10. To perform magnetic particle inspection of a given weld specimen.

- 11. To perform die penetrant test on a given weld specimen
- 12. To perform ultrasonic test on a given weld specimen
- 13. Hardness test.

Subject Code : **MEO-721**

Title of the course **Finite Element Methods** :

L	Т	Р	Credits	Weekly Load			
3	0	0	3	3			

Course Outcomes:

After successful completion of course, the students should be able to

- Explain strain-displacement and stress-strain relations with and without the temperature effect. CO1:
- CO2: Explain various numerical methods which can be applied to mechanical problems.
- CO3: Discretize the continuum domain into finite element mesh using various types of elements.
- **CO4:** Apply the finite element methods and analyze the implementation to solve static, scalar field and dynamic problems.
- **CO5**: Formulate the computer implementation of the finite element methods.

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Programme Outcomes (POs)											Program Specific			
													Outco	mes (P	SO)
	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	3	2	2	2	1	1	1	2	3	3	2	2	1
CO2	3	3	3	2	2	2	2	1	2	3	3	3	1	1	2
CO3	3	3	3	3	3	3	2	3	3	3	3	3	2	2	1
CO4	3	2	3	2	2	2	3	2	3	3	3	3	2	2	2
CO5	3	3	3	2	2	3	3	3	3	3	3	3	1	2	1
Avera	3	2.8	3	2.2	2.2	2.4	2.2	2	2.4	2.8	3	3	1.6	1.8	1.4
ge															

Course Description	Lectures
Unit-I	·
Introduction	
Historical Background, Stresses and equilibrium, Boundary Conditions, Strain-Displacement	06
Relations, Stress-Strain Relations, Temperature Effects, Vectors and Matrices.	
Introduction & Fundamental Concepts	
Rayleigh-Ritz Method, Galerkin's Method, Point Collocation Method, Least Square Method,	06
Weighted Residual Method.	
1-D FE Modeling	

UG Syllabus for Welding Technology 20

2016
Scheme

Finite Element Modeling, Coordinates and Shape Functions, The Potential Energy Approach, The	08				
Galerkin's Approach, Assembly of Global Stiffness matrix and Load vector, Properties of					
Stiffness Matrix, Treatment of Boundary Conditions and Temperature Effects.					
2-D FE Modeling					
Finite Element Modeling, Constant Strain Triangle (CST).	04				
Unit-II	-				
2-D FE Modeling					
The Four Node Quadrilateral, Numerical Integration, Higher Order Elements; Nine Node	05				
Quadrilateral, Eight Node Quadrilaterals, Six Node Triangle.					
Truss					
Introduction, Plane Trusses, Assembly of Global Stiffness Matrix and Load Vector. (For 1D and					
2D problems only)					
Scalar Field Problems					
Introduction, Steady-state heat transfer, Potential Flow, Fluid Flow in ducts.					
Dynamic Considerations					
Element Mass Matrices, Evaluation of Eigen Values and Eigen Vectors. (Introduction only)					
Computer Implementation					
Introduction; Computer Program Organization for Calculation of System Matrices.	03				

Subject Code	:	MEO-722
Title of the course	:	Design of Experiments

Γ	L	Т	Р	Credits	Weekly Load
	3	0	0	3	3

After successful completion of course, the students should be able to

- **CO1:** Understand the basic concepts of optimization.
- **CO2:** Understand the basic concepts of experimentation analysis
- **CO3:** Develop mathematical model for random phenomena.
- **CO4:** Develop engineering solutions based on statistical analysis.

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Programme Outcomes (POs)ProgramSpecific												pecific		
	Outcomes (PSO)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	1	2	2	1	1	1	2	3	3	2	2	2	1
CO2	3	2	2	2	2	2	1	2	3	3	3	1	3	2	2
CO3	2	1	3	3	3	2	3	3	3	3	3	2	2	3	3
CO4	2	2	3	2	2	3	2	3	3	3	3	2	2	2	3
CO5	3	2	3	2	3	3	3	3	3	3	3	1	2	3	3
Avera	2.6	1.8	2.4	2.2	2.4	2.2	2	2.4	2.8	3	3	1.6	2.2	2.4	2.4
ge															

Theory

Course Description	Lecture(s)
Unit-I	
Introduction	04
Introduction to optimization techniques & types, strategy of experimentation, procedure to design	
the experimentation.	
Collection of data	08
Introduction, primary & secondary data, graphical representation of data, bar chart, histograms, dot	
plot, scatter plot & box-whiskor plot, sampling & sampling distribution, acceptance sampling;	
single, double & multiple sampling plan,	

Data analysis	10
Measures of central tendency; arithmetic mean, median, mode, measures of dispersion, range,	
deviation, variance, correlation, types of correlation, normal distribution.	
Unit-II	
Regression analysis	08
Introduction, uses of regression analysis, difference between correlation and regression analysis,	
regression line and equations; regression equation of Y on X & regression equation of X on Y,	
standard error of estimate.	
Analysis of variance	08
Introduction, assumption, techniques of analysis of variance; one way ANOVA, two ways ANOVA,	
numerical on ANOVA.	
Hypo thesis testing	10
Definition, degree of freedom, hypotheses testing, critical region, level of significance, errors in	
sampling, test of significance for small samples & large samples, T - test, Z - test	

Recommended Books:

Title	Author(s	Publisher
Design & analysis of experiments,	Douglas C Montgor	nery John Wiley
Statistical design and analysis of experiment	John. P. W. M.	John Wiley
Statistical methods for engineering & science	HC Taneja,	I.K. international pub. House
Statistical methods	SP Gupta	Sultan Chand & son's

Subject Code MET-721 : Title of the course **AUTOMOBILE ENGINEERING** :

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

- CO1: Understand the basic knowledge of automobile component, different systems and its performance.
- CO2: Assess the basics about Automotive Engine System and fuel supply System and apply to different type of vehicles.
- CO3: Understand the concept of Automobile Chassis, hydraulically operated clutch, fly wheel, and automotive brake system.
- CO4: Understand about Automotive Transmission, types of gear, working of gear boxand apply the knowledge to Gear selector mechanism, differentials and drive axles.
- CO5: Learn the basic concepts of Automotive Electronic and Electrical Equipment and application to various parts of automobile

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):															
COs	Prog	Programme Outcomes (POs) Program Specific												pecific		
														Outcomes (PSO)		
	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	
CO1	3	3	3	3	3	1	1	1	2	2	3	3	3	1	1	
CO2	3	3	3	3	3	1	2	1	2	2	2	3	1	3	1	
CO3	3	3	3	3	3	1	1	2	2	2	2	3	2	2	2	
CO4	3	3	3	3	3	1	1	1	2	2	2	3	2	2	2	
CO5	3	3	3	3	3	1	1	3	2	2	2	3	2	2	3	
Avera	3	3	3	3	3	1	1.2	1.6	2	2	2.2	3	2	2	1.8	
ge																

Theory

Unit	Main Topic	Course out line	Lectures
Unit-I			
	1. Engine fundamentals and	Introduction-Engine fundamentals, engine operations,	6
	performance.	engine type and construction. Engine measurement	
		and performance.	

2016	
Scheme	

	2.Automobile Engine	Automobile Engine Components: connecting rods,	6
	Components:	rod bearings, piston rings, crank shaft, cylinder	0
	Components.		
		blocks, valves & valves train,	-
	3.Engine fuel supply System	Automotive engine fuels, fuel and exhaust system,	6
		carburetors, carburetor fuel system service, diesel fuel	
		engines injection system, gasoline fuel injection	
		system.	
	4. Automotive Engine System	Engine lubricating system, engine cooling systems,	6
		emission control & tune up.	
		· ·	
Units-II	5.Automotive Chassis	Automotive Chassis:Spring and suspension system,	8
01110 11		steering systems, automobile clutches, hydraulically	Ũ
		operated clutch, pressure plate, fly wheel, adjusting	
		wheel, spacing, and automotive brake system.	
		wheel, spacing, and automotive blake system.	
	6.Automotive Transmission:	Automotive Transmission:Gear ratio, types of gear,	8
		types of gear box, working of gear box, Gear selector	U
		mechanism, planetary type gear box, universal joints,	
		and differentials and drive axles.	
	7.Automotive Electronic and	Automotive Electronic and Electrical Equipment: The	8
	Electrical Equipment:	automotive electrical system, starting system, central	
		point ignition, electronic ignition system, automotive	
		battery.	

Total-48

Recommended Books:

Title	Authors	Publishers
1.Automobile Engineering	Nakre	Standard
2. Automobile Mechanics	Crouse	Tata McGraw Hill
3. Automobile Engineering	Kirpal Singh	Standard
4. A Tex Book of IC Engine	Mathur& Sharma	Dhanpat Rai

Subject Code MEP-721 : Title of the course **AUTOMOBILE ENGINEERING** :

L	Т	Р	Credits	Weekly Load
0	0	2	1	2

Course Outcomes:

After successful completion of course, the students should be able to

- CO1: Understand the basic knowledge of automobile component, different systems and its performance.
- CO2: Assess the basics about Automotive Engine System and fuel supply System and apply to different type of vehicles.
- CO3: Understand the concept of Automobile Chassis, hydraulically operated clutch, fly wheel, and automotive brake system.
- CO4: Understand about Automotive Transmission, types of gear, working of gear boxand apply the knowledge to Gear selector mechanism, differentials and drive axles.
- CO5: Learn the basic concepts of Automotive Electronic and Electrical Equipment and application to various parts of automobile

Pre-requisite knowledge:

CO/PO	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
COs	Prog	Programme Outcomes (POs) Program Specific												pecific	
		Outcomes (PSO)												SO)	
	РО	РО	PO	РО	РО	РО	РО	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	3	3	3	1	1	1	2	2	3	3	3	1	1
CO2	3	3	3	3	3	1	2	1	2	2	2	3	1	3	1
CO3	3	3	3	3	3	1	1	2	2	2	2	3	2	2	2
CO4	3	3	3	3	3	1	1	1	2	2	2	3	2	2	2
CO5	3	3	3	3	3	1	1	3	2	2	2	3	2	2	3
Avera	3	3	3	3	3	1	1.2	1.6	2	2	2.2	3	2	2	1.8
ge															

List of Experiments

- 1. Construction Details and working of 4-stroke and 2-stroke petrol engine.
- 2. Construction Details and working of engine components in 4-stroke Diesel engine.
- 3. Construction Details and working of fuel supply system in petrol engine.
- 4. Construction Details and working of ignition system in petrol engine.
- 5. Construction Details and working of fuel supply system in diesel engine.
- 6. Construction Details and working of clutch and its various components.
- 7. Construction Details and working of gear box and its components.
- 8. Construction Details and working of differential.

- 9. Construction Details and working of brakes in automobile.
- 10. Construction Details and working of steering system of a car.
- 11. Construction Details and working of suspension system of an automobile.

Title of the course : Human values and professional ethics

Subject Code : HUM-721

	L	Т	Р	Credits	Weekly Load
Γ	2	0	0	2	2

CO1: Students will understand the importance of Values and Ethics in their Personal lives and professional careers

CO2: The students will learn the rights and responsibilities

CO3: Responsibilities of employee, team member and a global citizen.

CO4: Apply practical strategies for handling ethical dilemmas.

CO5: Understand the importance of communication and ethics with all stakeholders.

Pre-requisite knowledge:

	CO/I	PO Ma	pping:	(Stron	g(3) /	Mediu	m(2) /	Weak	(1) ind	icates	streng	th of c	orrelatio	on):			
		Programme Outcomes (POs)													Program Specific Outcomes (PSO)		
COs	PO1	РО 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3		
CO1	1	1	1	1	2	3	2	3	3	1	2	2	1	2	1		
CO2	1	1	1	1	2	3	2	2	2	1	2	1	1	1	1		
CO3	2	1	1	1	2	1	2	1	2	1	2	1	1	2	1		
CO4	2	1	1	2	1	2	3	2	1	2	1	1	2	1	1		
CO5	1	1	1	1	2	3	2	2	2	1	2	1	1	1	1		
Averag e	1.4	1	1	1.2	1.8	2.4	2.2	2	2	1.2	1.8	1.2	1.2	1.4	1		

Course Description	Lecture(s)
Unit-I	
Values and Self Development	
Social values and individual attitudes, Work ethics, Indian vision of humanism, Moral and	04
non moral valuation, Standards and principles, Value judgments. Importance of cultivation	

of values, Sense of duty, Devotion, Self reliance, Confidence, Concentration, Truthfulness,	
Cleanliness, Honesty, Humanity, Power of faith, National unity, Patriotism, Love for nature,	
Discipline.	
Personality and Behavior Development	
Soul and scientific attitude, God and scientific attitude, Positive thinking, Integrity and	04
liscipline, Punctuality, Love and kindness, Avoiding fault finding, Free from anger, Dignity	
of labor, Universal brotherhood and religious tolerance, True friendship, Happiness vs.	
suffering love for truth, Aware of self destructive habits, Association and cooperation,	
Doing best, Saving nature.	
Unit-II	
Character and Competence	
Science vs. God, Holy books vs. blind faith, Self management and good health, Science of	03
reincarnation, Equality, Nonviolence, Humility, Role of women, All religions and same	
nessage, Mind your mind, Self control, Honesty, Studying effectively.	
Human Rights	
urisprudence of human rights nature and definition, Universal protection of human rights,	02
Regional protection of human rights, National level protection of human rights, Human ights and vulnerable groups.	
Competence in professional ethics	
Ability to utilize the professional competence for augmenting universal human order, Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, Ability to identify and develop appropriate technologies and nanagement patterns for above production systems. Case studies of typical holistic echnologies, management models and production systems	03

Total=16

Recommended Books:

- 1) S.K.Chakraborty, Values and Ethics for Organizations Theory and Practice; Oxford University Press, New Delhi,2001.
- 2) S.K. Kapoor, Human rights under International Law and Indian Law; Prentice Hall of India, New Delhi, 2002.
- 3) D.D. Basu, Indian Constitution; Oxford University Press, New Delhi, 2002.
- 4) W.K. Frankena, Ethics; Prentice Hall of India, New Delhi, 1990.

5) R. R. Gaur, R. Sangal, G. P. Bagaria, A Foundation Course in Value Education. 2009,

6) M Govindrajran, S Natrajan, V.S. Senthil Kumar, Engineering Ethics(including Human Values); Eastern Economy Edition, Prentice Hall of India Ltd.

Subject Code	:	MET-722
Title of the course	:	Operations Research

L	Т	Р	Credits	Weekly Load
3	1	0	4	4

After successful completion of course, the students should be able to

- CO1: Understand the basic concepts & issues of engineering optimization and application of optimization techniques.
- **CO2:** Formulate the linear programming problem using different approaches and attempt the variations of the class of problems.
- **CO3:** Device assignment model, and attempt the variations of the class of problems.
- **CO4:** Draw the network diagrams for project management.
- CO5: Understand the basic concepts of queuing theory and analyze the case studies based on (M/M/1) model.

Pre-requisite knowledge:

CO/P	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
СО	Progr	Programme Outcomes (POs) Program Specific													
s		Outcomes (PSO)													
	PO1														
		2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO	3	3	3	3	3	3	3	3	3	3	1	1	1	2	2
1															
CO	3	3	2	3	2	1	3	2	2	1	3	1	1	1	1
2															
CO	2	2	2	2	3	1	3	2	2	2	2	2	1	1	2
3															
CO	2	2	2	3	3	1	3	2	2	2	2	2	1	2	1
4															
CO	2	2	2	2	3	1	3	2	2	2	2	3	1	1	1
5															
Ave	2.4	2.4	2.2	2.6	2.8	1.4	3	2.2	2.2	2	2	1.8	1	1.4	1.4
rage															

Theory

Course Description	Lecture(s)
Unit-I	
Introduction	04
Meaning of OR, historical development, characteristics of OR, application of OR, main feature of	

Linear Programming	10
Introduction, formulation of LP problem, graphical representation and solution to LP problems,	
simplex method, two phase method, degeneracy problem, Big-M method, duality in linear	
programming.	
Transportation Model	10
Definition, mathematical formulation, optimal solution of transportation problem, optimality test,	
balanced and unbalanced problem, minimization and maximization problem, different methods of	
finding solution.	
Unit-II	
Assignment Model	08
Introduction, mathematical formulation, Hungarian method for assignment problem, minimization	
and maximization problem, unbalanced, sequencing and traveling salesman problems.	
NETWORK ANALYSIS IN PROJECT PLANNING (PERT & CPM)	10
	1
Introduction, evolution and application of PERT & CPM technique, Drawing of network diagram,	
Introduction, evolution and application of PERT & CPM technique, Drawing of network diagram, float and slack times, time estimates, critical path, crashing and updating problem.	
	06
float and slack times, time estimates, critical path, crashing and updating problem.	06

Recommended Books:

Title

- Engineering Optimization
 Operations Research
- Operations Research
 Operations Research
- 4. Operations Research
- 5. Operations Research
- Author(s) S. S. Rao A. H. Taha P. K. Gupta & D. S. Hira A. D. Belegundu C. K. Mustafi

Total=48

Publisher New Age International Prentice Hall of India S. Chand & Co. Prentice Hall of India New Age International

Subject Code	:	MET-723B
Title of the course	:	Smart Manufacturing

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

After successful completion of course, the students should be able to

- CO1: understand the concept of smart manufacturing
- CO2: identify the intricacy of data management system
- CO3: apply various tools for smart manufacturing
- CO4: understand the concept of KPIs and Manufacturing execution systems
- CO5: identify the cases studies using modern manufacturing operations management.

Pre-requisite knowledge:

CO/PO	Mappi	ing: (S	trong(3) / M	edium	n(2) / V	Veak(1	l) indi	cates s	trength	of corr	elation):			
COs														Program Specific Outcomes (PSO)		
	PO	PO PO1 PO1 PO												PSO	PSO	
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	
CO1	2	2	3	3	3	2	2	2	1	1	2	3	1	2	1	
CO2	2	2	3	3	3	2	2	2	1	1	2	3	1	1	1	
CO3	2	2	3	3	3	2	2	2	1	1	2	3	1	2	1	
CO4	2	2	3	3	3	2	2	2	1	1	2	3	1	2	1	
CO5	2	2	3	3	3	2	2	2	1	1	2	3	2	1	1	
Avera	2	2	3	3	3	2	2	2	1	1	2	3	1.2	1.6	1	
ge																

Main Topics & Course Outline			Lectures
UNIT-I			
Introduction			
Introduction to the concept of smart manufa	acturing (SM): plant-wide opti-	mization; agile	
supply chain, sustainable production; Impor	rtant constituents of smart man	ufacturing;	
Application and benefits of smart manufact	uring		5
Layers in smart manufacturing			
Manufacturing ecosystem; Multiple layers of	of data management: macro, m	eso, micro	3
SM platforms			
Architecture of SM platforms; flexibility; ir	nterpretability; scalability; opti	mization of	
manufacturing operations.			3
Tools and equipment			
Tools and equipment required for SM; SM	App store.		3
UNIT-II			
Manufacturing execution systems			
Introduction to the manufacturing execution	n systems (MES), tools and tec	hniques; MES	
key performance indicators (KPIs); Applications and advantages of MES.			
Manufacturing operations management			
Introduction to manufacturing operations m	0	techniques; MOM	
key performance indicators; Applications and	nd advantages of MOM.		5
Recent issues in smart manufacturing			
Integrating factory and enterprise information		ng factory with	
smart grid; phases of smart manufacturing;	smart manufacturing test-bed.		4
Case studies			
Industry case studies on: smart factories, int	tegrating factories and enterpri	se with smart	
grid, strategic decision making, etc.			12
Recommended Books	1	1	
Title	Author(s)	Publisher	
Smart Manufacturing with Artificial			
Intelligence	Jake Krakauer		
	Pedro Neto, António Paulo		
Robotics in Smart Manufacturing	Moreira.	Springer	

Scheme

Subject Code : MET 723D

Title of the course : ARC PHYSICS

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

Course Outcomes:

After successful completion of course, the students should be able to

CO1: Learn and understand different physical properties of fluids at elevated temperatures.

- **CO2:** Learn and understand the concept of electricity and magnetism.
- **CO3:** Learn and understand about the basic concepts of fluid and magneto fluid dynamics and apply this fundamental knowledge for understanding electric arc in welding.
- **CO4:** Learn about metal transfer and mass flow in the weld pool and apply this knowledge for understanding its implications on the weld strength.
- **CO5**: Learn and understand the concept of high power density welding.

Pre-requisite knowledge:

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

0/10	wiap	ping. (Suon	g(3)/	wieur	um(2)/ ••• €	ar(1)	mult	ales su	engui		ciation).	
COs	Prog	gramn	ne Out	tcome	s (PO	s)							-	ram Sp omes (l	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
CO1	3	2	1	1	2	2	1	1	1	2	1	2	1	1	2
CO2	3	3	1	2	3	2	2	1	2	1	2	2	1	1	2
CO3	3	3	3	3	3	3	2	3	3	3	1	2	1	1	1
CO4	3	3	2	3	3	2	3	2	3	1	2	1	2	2	1
CO5	3	3	3	3	3	3	3	3	3	1	3	3	1	2	1
Avera ge	3	2.8	2	2.4	2.8	2.4	2.2	2	2.4	1.6	1.8	2	1.2	1.4	1.4

Theory:

SECTION I

PHYSICAL PROPERTIES OF FLUIDS AT ELEVATED TEMPERATURES

Introduction, gases, dissociation and ionization, the equation of state of a gas at elevated temperature, the equilibrium constant, evaluating the degree of dissociation and ionization,

specific heat, transport phenomena, particle encounters in a slightly ionized gas, particle encounters in an highly ionized plasma, electrical conductivity, thermal conductivity, viscosity, calculating the transport coefficients, liquid metals, vapour pressure, surface tension, viscosity

6

6

ELECTRICITY AND MAGNETISM

Fundamentals like Electrons and ions, electrostatics, Gauss's law, the magnetic force, the law of Biot and Savart, electromagnetic induction, the Maxwell stress and the force on a conducting body, the force acting on a liquid drop carrying an electric current, the current density and ohms law, the pinch instability: an approximate solution, the dynamics of instability in fluid cylinder, predicted behaviour of perturbed cylinder: radial pinch, higher unstable modes, the effect of an externally applied magnetic field, the growth rate constant, the effect of viscosity on the instability of a fluid cylinder.

FLUID AND MAGNETO FLUID DYNAMICS

Introduction, the continuity equation, the momentum equation, momentum, pressure, viscosity, Lorentz force, other forces, and the equilibrium condition, the stream function, the components of stress, the Bernoulli equation, solutions of the momentum equation, laminar flow from a point source of momentum with no electric current: the steady jet, the fluid pressure in the jet, the steady jet with a heat source, laminar flow from a point source in a semi-infinite fluid (no electric current), laminar flow in a semi-infinite fluid having a point source of current in the plane $(\theta = \pi/2)$, laminar flow in a semi-infinite fluid: the linear solution, the time-dependent development of flow due to a point source of current in a semi-infinite region, breakdown of the solution to the non-linear problem, other limitations to analytical solutions of the momentum equation, laminar flow in a liquid drop immersed in a conducting fluid carrying an electric current, distortion of the liquid drop, an ellipsoid of revolution in a conducting fluid: the drag coefficient, laminar flow in a hemisphere having a point source of current at the origin, flow in a container induced by a distributed current source.

6

THE ELECTRIC ARC

Introduction, general description of glow and arc discharges, principal characteristics of the electrode regions of arcs, high electric and thermal fields, contraction, classification based on degree of contraction: range of observed current density, glow and arc cathode; glow and arc plasma; glow and arc cathode and abode falls, distinction between thermionic and nonthermionic cathodes, the lo voltage non-thermionic cathode, surface clean up and movement in

Scheme

magnetic field including retrograde motion, vapour and plasma jets; force on cathode, electrode material and surface state, mature of gas or vapour, value of current, gas pressure; vacuum arcs, theories of the cathode mechanism, the glow cathode: the thermionic cathode, theories of the non-thermionic cathode, the arc column, the anode, theory of glow anode, anode fall voltage and current density, energy balance at the anode, plasma and vapour jets.

SECTION-II

THE ELECTRIC ARC IN WELDING

Introduction, structural features, overall electrical characteristics, the total arc characteristics at various pressures, relationship between power source and arc characteristics, arc efficiency, cathode phenomena, cathode phenomena, cathode phenomena and characteristics: thermionic cathodes, the potential drop adjacent to a thermionic cathode, cathode phenomena and characteristics: non-thermionic cathodes, anode phenomena, anode characteristics, the anode at the tip of the rod, the heat balance at the anode, the depth of the anode drop zone, the arc column, the energy flux in the arc column, the ac column temperature, mass flow in the arc column, the effect of pressure variation on the arc column, calculating mass and heat flow in the arc column, arc stiffness and arc blow, controlling arc stiffness and arc force.

8

METAL TRANSFER AND MASS FLOW IN THE WELD POOL

Metal transfer, introduction, the effect of static forces in drop detachment, the pinch instability in GMA welding, other unstable modes, the burn off rate, the drop temperature, the drop transfer rate, the pinch model applied to the droplet transfer rate, transfer of drops across the arc, the arc force, the weld pool, flow in the weld pool, the weld pool temperature, the shape of the weld pool and the reinforcement bead, the effect of composition and surface condition on the shape of the weld pool.

8

HIGH POWER DENSITY WELDING

Introduction, keyholing, range of power densities in welding processes (a) high power densities, (b) intermediate power densities, (c) & (d) low power densities, threshold power density for vaporization, size of the keyhole, discussion on forces acting within the keyhole, forces tending to form and maintain the keyhole like beam pressure, vapour pressure, recoil pressure, ; forces tending to close the keyhole like Gravitational pressure, Surface tension pressure, pressure

6

balances for a generalised keyhole a) bottom of the keyhole (closed), b) sides of the keyhole, moving weld pool.

8

Reference books:

- 1. The Physics of Welding by J. F. Lancaster, Publisher: Pargamon Press.
- 2. Advanced joining technologies by T. W. Eager, Publisher: Chapman & Hall

Subject Code	:	MET-723E
Title of the course	:	Design of Weldments

L	Т	Р	Credits	Weekly Load
3	0	0	3	3

After successful completion of course, the students should be able to

- CO1: Understandings of thetheories of fracture mechanics, types of fractures.
- CO2: Understand the mechanical properties and the behavior of the welded components operating at varying temperatures are given to students which in turn enlighten them to understand and interpret the materials and its properties in a better perspective.
- **CO3:** To identify, construct and examine the types of welded joints their significance and applications
- **CO4:** The safety measures against the setting up and means of controlling residual stresses help students to design and fabricate the weld components with enhanced service life.
- **CO5**: To control distortion and the prevention of distortion.

Pre-requisite knowledge:

CO/PO	Mappi	ng: (S	trong(3) / M	edium	(2) / V	Veak(1) indi	cates s	trength	of corr	elation):		
COs	Prog	ramme	e Outc	omes	(POs)								Progra Outco	am Spomes (P	pecific SO)
	PO	PO	PO	РО	PO	PO	PO	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	3	1	1	2	2	1	1	1	2	1	2	1	1	1
CO2	3	3	1	2	3	2	2	1	2	1	2	2	1	1	2
CO3	3	3	3	3	3	3	2	3	3	3	1	2	1	2	1
CO4	2	1	2	3	3	2	3	2	3	1	2	1	2	2	2
CO5	1	2	3	3	3	3	3	3	3	1	3	3	1	1	1
Avera ge	2.4	2.4	2	2.4	2.8	2.4	2.2	2	2.4	1.6	1.8	2	1.2	1.4	1.4

Course Description	Lecture(s)
Unit-I	÷
Fracture in Metals	
Types of fracture mainly: Ductile fracture, Brittle fracture, Intergranular fracture, Various	05
factors/conditions affecting type of fracture	
Fracture Mechanics	
Assessment of fracture toughness, Griffith's theory of fracture mechanics, Brittle fracture test	10
parameters, Procedure for evaluating propensity for brittle fracture, Fracture mechanics testing of	
ductile metals, Crack arrest-principles and methods of crack arrest	
Mechanical Properties at Low Temperature	
Strength at low temperature, Impact toughness at low temperature, Energy absorption in Impact	04

testing, Test methods for toughness evaluation.	
Fatigue	
Definition and meaning of fatigue of metals, Mechanism of fatigue failure, S-N diagram, Factors	05
affecting fatigue life	
Unit-II	
Weld Joints	04
Types of welds and welded joints, Different types of edge preparation and factors affecting their	
selection.	
Welding Symbols	
Primary and secondary weld symbols, location of welding symbols on drawings.	05
Weld design for static loading	
Salient weld design features, Fundamental formulas for design under different types of loading like	08
tension, compression, bending, torsion and impact loading	
Residual Stresses in Weldments	
Definition, causes of development of residual stresses, Residual stresses in specific materials and	03
joints, Methods of controlling residual stresses in Weldments	
Distortion in Weldments	
Definition, and types of distortion in weldments, Various causes and control of distortion, in	04
weldments	

Total=48

Recommended Books:

1. Welding Engineering & Technology by R.S. Parmar (Khanna Publications)

- 2. Welding Metallurgy (Volume-1) by George E.Linnert (AWS)
- 3. Design of Welded Structures by Blodgett, (Lincoln Electric Co.)
- 4. Modern Arc Welding Technology by S.V. Nadkarni (Oxford & IBH)
- 5. Design of Welded Structures by Pellini, W.S ISBN: 0-85300-166-9 (The Welding Institute, UK)
- 6. AWS Welding Handbook Volume-1 Leonard. P. Connor AWS
- 7. Standard Methods for Mechanical Testing of Welds ANSI/AWS B4.0-92